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GRAPH-THEORETIC EXPANSION LINEAR-ALGEBRAIC EXPANSION

Classical expanders are sparse graphs in high connectivity that have wide applications. We briefly recall the There are several well-studied notions of linear-algebraic expansion, including quantum expansion [5, 6],

following three notions of expansion defined from different perspectives. . [7] and dimension expansion [8], de;ﬁned in natpral apalogy to the left-three graph-theoretic notions,
respectively. In our paper, we also defined a new notion termed dimension edge expansion [1].

Let G = ([n], E) be a d-regular graph. We mainly work with doubly stochastic matrix tuples, which are those matrix tuples B = (B, ..., By) € M(n, €)% with
 The spectral expansion of G, A(G), is defined as the second-largest absolute value over all eigenvalues of & BB} = X¥{_, B;B; = dI,,. The associated quantum operator is the linear map ®g: M(n, C) - M(n, C) defined by

Ac, where A 1s the adjacency matrix of G.

d
1
 The of G, h(G), is defined as Gp(X) = Ez B;XB; .
i=1
h(G) = min 10(V)| *The quantum expansion of dg, A(B), 1s defined as the second-largest absolute value over all eigenvalues of ®g.
Vg[n]n a1V * The of ®g, hy(B), is defined as
1<|W|<5

I, — P, ®g(P
where d(V) ={{i,j} € E:i€V,je[n]\V} ho(B) = min ( dilr/n(VB)( V)>,

1=dim(V)<

* The vertex expansion of G, u(G), 1s defined as
where Py is the orthogonal projection to the subspace IV < C", and (-,-) denotes the standard inner product on M(n, C).

u(G) = min out (V)] , » The dimension expansion of B, u(B), is defined as
V<n] V]
15|Wls3 | dim(V + B(V)) — dim(V)
u(B) :=  min _ ,
| | N vaeh dim(V)
where dgut(V) :=={j € [In]\V:3i € V,st. {i,j} € E}. 1=dim(V)=-
where B(V) := (Uie[d] {B;v:v € V}) and (-) denotes the linear span over C.
* The dimension edge expansion of B, hp(B), is defined as
d t o
o0l 6 3 Dol _ 4 _ hoB) = min  2m2nkUpaBily)
av| — 42 4 V] 2 et d - dim(V)
1=dim(V)<3
/ where T, € M(n X dim V,C) i1s a matrix whose columns form an orthonormal basis of V, and T . € M(n X

dim V1, €) is a matrix whose columns form an orthonormal basis of V-, the orthogonal complement of V.

Quick example:

Classical results [2,3,4]:

[k * k 1 O X *
For any d-regular graph G, the above three notions of expansion are all equivalent in the sense that B(V)=| * *  x ] : lo 1] — [ % % ]
b3y b3y * 0 O b31 b3 . . _ -
(1) u(G) < h(G) < u(G); o1t T £ %1110 dim(B(V) + V) — dim(V) = rank(T, 1 BTy)
d T, BTy =|0| | * * *|-|0 1|=[bs1 bs]
1-2A(G) 11 b31 b32 * 0 O
(2) —— < h(G) < y2(1 - A(6)).
OVERVIEW
Graph—theoretiC° [SpectralJ . \)[ J(, . [VCI‘ t(‘X] (1) Dimension expansion does not imply quantum expansion: We showed the existence of dimension
- ‘ 2,3,4] , . ‘ folklore , — expanders that are arbitrarily poor quantum expanders (and thus arbitrarily poor quantum edge
' . (3) T expanders).
i [10] v i (3)

X - - 3 (2) Quantum expansion implies dimension expansion: We showed that any quantum expander based on
: [dlmensmn edgej | .

. (2) ,, an unital quantum channel gives rise to a dimension expander, via our new notion of dimension edge
Y AN : : :
Li loebrai n A ﬂ\$ A expansion. This also leads to a new and more modular proof of Lubotzky-Zelmanov result [9] with a
- : 2 1 11Y
Inear-algebraic [quan um] 7] (2) X () (9] [(11111()1151011j stronger bound.
\ N /
[ J (3) Dimension expansion and dimension edge expansion are indeed proper generalizations of vertex

. expansion and edge expansion, respectively: We showed a quantitative equivalence in the sense of
Remark: (1), (2) and (3) refer to our three main results, [2,3,4], [7], [9] and [10] refer to the

corresponding references in the last section. The solid arrows indicate the implication or equivalence,
while the dashed arrows represent proper generalizations.

graphical matrix tuples. In another paper [11], we also proved that many important graph-theoretic

properties are equivalent to linear-algebraic properties of the associated graphical matrix tuple.

MAIN RESULT (1) MAIN RESULT (2)
We proved that there exist dimension expanders which have arbitrarily poor quantum expansion. We proved that every unital quantum expander is a dimension expander by
1—A(B) - ho(B) _ _
Specifically, we showed that for any matrix tuple B = (By, ..., Bg) € M(n, €)% consisting of unitary matrices, 2d < hp(B) < u(B),
— d cati
* = (BY, .., B3) € M(n, ) satisfies that where the first inequality was given by Hastings [7]. It follows that if there is a spectral gap 1 — A(B) > 0,
1(B%) = u(B)/d and A(B) < ¢ then u(B) > 0.
for all £ > 0, all sufficiently large n € N, and some sufficiently small power s > 0. This proof requires some In case B consists of unitary matrices only, we can get rid of d to make a stronger bound, 1.e.,
more advanced techniques, such as a number of compactness arguments. 1—A(B)
q p & < ho(B) < hp(B) < u(B).
We also showed that there exist dimension expanders B consisting of unitary matrices such that for all s > 0, This improves the result of Lubotzky and Zelmanov [9] where in the same setting they proved
B® is not a quantum expander. It concludes that we cannot convert any dimension expander into one that is 1 —A(B)
also a quantum expander by taking a large power s. 6 < u(B).
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(In], E), where E; ; is the elementary matrix with a 1 in position (i,j) and zeros in all other entries. For
example, whenn = 3,
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