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There are several well-studied notions of linear-algebraic expansion, including quantum expansion [5, 6], quantum
edge expansion [7] and dimension expansion [8], defined in natural analogy to the left-three graph-theoretic notions,
respectively. In our paper, we also defined a new notion termed dimension edge expansion [1].

We mainly work with doubly stochastic matrix tuples, which are those matrix tuples 𝐁 = 𝐵!, … , 𝐵" ∈ M(𝑛, ℂ)" with
∑#$!" 𝐵#𝐵#∗ = ∑#$!" 𝐵#∗𝐵# = 𝑑𝐼&. The associated quantum operator is the linear map Φ𝐁: M(𝑛, ℂ) → M(𝑛, ℂ) defined by

Φ𝐁(𝑋) ≔
1
𝑑
5
#$!

"

𝐵#𝑋𝐵#∗ .

•The quantum expansion of Φ𝐁, 𝜆(𝐁), is defined as the second-largest absolute value over all eigenvalues ofΦ𝐁.

• The quantum edge expansion of Φ𝐁, ℎ((𝐁), is defined as

ℎ((𝐁) ≔ min
)*ℂ!

!*,-.())*&1

𝐼& − 𝑃) , Φ𝐁 𝑃)
dim(𝑉)

,

where 𝑃) is the orthogonal projection to the subspace 𝑉 ≤ ℂ&, and ⟨⋅,⋅⟩ denotes the standard inner product on M(𝑛, ℂ).

• The dimension expansion of 𝐁, 𝜇(𝐁), is defined as

𝜇(𝐁) ≔ min
)*ℂ!

!*,-.())*&1

dim(𝑉 + 𝐁(𝑉)) − dim(𝑉)
dim(𝑉)

,

where 𝐁 𝑉 ≔ ∪#∈ " {𝐵#𝑣: 𝑣 ∈ 𝑉} and ⋅ denotes the linear span over ℂ.

• The dimension edge expansion of 𝐁, ℎ3(𝐁), is defined as

ℎ3(𝐁) ≔ min
)*ℂ!

!*,-.())*&1

∑#$!" rank 𝑇)"
4 𝐵#𝑇)

𝑑 ⋅ dim(𝑉)
,

where 𝑇) ∈ M(𝑛 × dim 𝑉, ℂ) is a matrix whose columns form an orthonormal basis of 𝑉 , and 𝑇)" ∈ M(𝑛 ×
dim 𝑉5, ℂ) is a matrix whose columns form an orthonormal basis of 𝑉5, the orthogonal complement of 𝑉.

Quick example:

𝐵 𝑉 =
∗ ∗ ∗
∗ ∗ ∗
𝒃𝟑𝟏 𝒃𝟑𝟐 ∗

⋅
1 0
0 1
0 0

=
∗ ∗
∗ ∗
𝒃𝟑𝟏 𝒃𝟑𝟐

𝑇!!
" 𝐵𝑇) =

0
0
1

4

⋅
∗ ∗ ∗
∗ ∗ ∗
𝒃𝟑𝟏 𝒃𝟑𝟐 ∗

⋅
1 0
0 1
0 0

= 𝒃𝟑𝟏 𝒃𝟑𝟐

dim 𝐵 𝑉 + 𝑉 − dim(𝑉) = rank(𝑇)"
4 𝐵𝑇))

Classical expanders are sparse graphs in high connectivity that have wide applications. We briefly recall the
following three notions of expansion defined from different perspectives.

Let 𝐺 = ([𝑛], 𝐸) be a 𝑑-regular graph.
• The spectral expansion of 𝐺, 𝜆(𝐺), is defined as the second-largest absolute value over all eigenvalues of
𝐴#, where 𝐴# is the adjacency matrix of 𝐺.

• The edge expansion of 𝐺, ℎ(𝐺), is defined as

ℎ(𝐺) ≔ min
!⊆[&]
()|+|)&,

|𝜕(𝑉)|
𝑑 ⋅ |𝑉|

,

where 𝜕(𝑉) ≔ {{𝑖, 𝑗} ∈ 𝐸: 𝑖 ∈ 𝑉, 𝑗 ∈ [𝑛] ∖ 𝑉}.

• The vertex expansion of 𝐺, 𝜇(𝐺), is defined as

𝜇(𝐺) ≔ min
!⊆[&]
()|+|)&,

𝜕out(𝑉)
|𝑉|

,

where 𝜕out(𝑉) ≔ {𝑗 ∈ [𝑛] ∖ 𝑉: ∃𝑖 ∈ 𝑉, s.t. {𝑖, 𝑗} ∈ 𝐸}.
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Classical results [2,3,4]:

For any 𝑑-regular graph 𝐺, the above three notions of expansion are all equivalent in the sense that

(1) 5(#)0 ≤ ℎ(𝐺) ≤ 𝜇(𝐺);

(2) (67(#), ≤ ℎ(𝐺) ≤ 2(1 − 𝜆 𝐺 ).

We proved that there exist dimension expanders which have arbitrarily poor quantum expansion.

Specifically, we showed that for any matrix tuple 𝐁 = 𝐵(, … , 𝐵0 ∈ M(𝑛, ℂ)0 consisting of unitary matrices,
𝐁8 ≔ 𝐵(8, … , 𝐵08 ∈ M(𝑛, ℂ)0 satisfies that

𝜇 𝐁9 ≥ 𝜇(𝐁)/𝑑 and 𝜆 𝐁 < 𝜀

for all 𝜀 > 0, all sufficiently large 𝑛 ∈ ℕ, and some sufficiently small power 𝑠 > 0. This proof requires some
more advanced techniques, such as a number of compactness arguments.

We also showed that there exist dimension expanders 𝐁 consisting of unitary matrices such that for all 𝑠 > 0,
𝐁8 is not a quantum expander. It concludes that we cannot convert any dimension expander into one that is
also a quantum expander by taking a large power 𝑠.
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We studied the graphical matrix tuple 𝐁# ≔ ( 𝑛 ⋅ E:,<: 𝑖, 𝑗 ∈ 𝐸) associated to a 𝑑-regular graph 𝐺 =
𝑛 , 𝐸 , where E:,< is the elementary matrix with a 1 in position 𝑖, 𝑗 and zeros in all other entries. For

example, when 𝑛 = 3,

E,,4 ≔
0 0 0
0 0 1
0 0 0

.

Inspired by a result of Bannink, Briët, Labib, and Maassen [10] who proved for any 𝑑-regular graph 𝐺,
𝜆 𝐁# = 𝜆 𝐺 ,

we showed some analogous results that for any 𝑑-regular graph 𝐺,

(1) ℎ= 𝐁# ≢ ℎ 𝐺 ;

(2) ℎ> 𝐁# = ℎ 𝐺 ;

(3) 𝜇 𝐁# = 𝜇 𝐺 .

(1) Dimension expansion does not imply quantum expansion: We showed the existence of dimension
expanders that are arbitrarily poor quantum expanders (and thus arbitrarily poor quantum edge
expanders).

(2) Quantum expansion implies dimension expansion: We showed that any quantum expander based on
an unital quantum channel gives rise to a dimension expander, via our new notion of dimension edge
expansion. This also leads to a new and more modular proof of Lubotzky-Zelmanov result [9] with a
stronger bound.

(3) Dimension expansion and dimension edge expansion are indeed proper generalizations of vertex
expansion and edge expansion, respectively: We showed a quantitative equivalence in the sense of
graphical matrix tuples. In another paper [11], we also proved that many important graph-theoretic
properties are equivalent to linear-algebraic properties of the associated graphical matrix tuple.
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LINEAR-ALGEBRAIC EXPANSION

We proved that every unital quantum expander is a dimension expander by
1 − 𝜆(𝐁)
2𝑑

≤
ℎ= 𝐁
𝑑

≤ ℎ> 𝐁 ≤ 𝜇 𝐁 ,

where the first inequality was given by Hastings [7]. It follows that if there is a spectral gap 1 − 𝜆 𝐁 > 0,
then 𝜇 𝐁 > 0.

In case 𝐁 consists of unitary matrices only, we can get rid of 𝑑 to make a stronger bound, i.e.,
1 − 𝜆(𝐁)

2
≤ ℎ= 𝐁 ≤ ℎ> 𝐁 ≤ 𝜇 𝐁 .

This improves the result of Lubotzky and Zelmanov [9] where in the same setting they proved
1 − 𝜆(𝐁)

6 ≤ 𝜇 𝐁 .
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Remark: (1), (2) and (3) refer to our three main results, [2,3,4], [7], [9] and [10] refer to the
corresponding references in the last section. The solid arrows indicate the implication or equivalence,
while the dashed arrows represent proper generalizations.
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