Diffie—Hellman Key Exchange from Commutativity to Group Laws

Dung Hoang Duong

Youming Qiao

Chuanqi Zhang

Outline

• Review the classical Diffie-Hellman key exchange.

Outline

• Review the classical Diffie-Hellman key exchange.

• Propose our group action-based key exchange framework.

Outline

• Review the classical Diffie-Hellman key exchange.

• Propose our group action-based key exchange framework.

• Instantiate the framework by linear code equivalence problems.

• Key exchange: a public-key protocol allowing two parties to establish a shared secret over an insecure channel.

• Key exchange: a public-key protocol allowing two parties to establish a shared secret over an insecure channel.

• The shared secret is computed from the combination of a public key and one's private key.

- Key exchange: a public-key protocol allowing two parties to establish a shared secret over an insecure channel.
 - The shared secret is computed from the combination of a public key and one's private key.
 - An adversary can eavesdrop on all transmitted messages.

- Key exchange: a public-key protocol allowing two parties to establish a shared secret over an insecure channel.
 - The shared secret is computed from the combination of a public key and one's private key.
 - o An adversary can eavesdrop on all transmitted messages.

• Application: HTTPS, VPN, and messaging services.

 $\mathsf{pk}: \mathsf{prime}\, p$ and generator γ of a cyclic group C_p

 $\mathsf{pk}: \mathsf{prime}\ p \ \mathsf{and}\ \mathsf{generator}\ \gamma \ \mathsf{of}\ \mathsf{a}\ \mathsf{cyclic}\ \mathsf{group}\ C_p$

$$a \overset{\$}{\leftarrow} \mathbb{Z}_{r}^{*}$$

 $\mathsf{pk}: \mathsf{prime}\ p \ \mathsf{and}\ \mathsf{generator}\ \gamma \ \mathsf{of}\ \mathsf{a}\ \mathsf{cyclic}\ \mathsf{group}\ C_p$

$$a \overset{\$}{\leftarrow} \mathbb{Z}_p^*$$

$$A=\gamma^a$$

 $\mathsf{pk}: \mathsf{prime}\ p \ \mathsf{and}\ \mathsf{generator}\ \gamma \ \mathsf{of}\ \mathsf{a}\ \mathsf{cyclic}\ \mathsf{group}\ C_p$

Alice

$$a \overset{\$}{\leftarrow} \mathbb{Z}_p^*$$

$$A = \gamma'$$

$$b\overset{\$}{\leftarrow}\mathbb{Z}_p^* \ B=\gamma^b$$

 $\mathsf{pk}: \mathsf{prime}\ p \ \mathsf{and}\ \mathsf{generator}\ \gamma \ \mathsf{of}\ \mathsf{a}\ \mathsf{cyclic}\ \mathsf{group}\ C_p$

Alice

$$a \stackrel{\$}{\leftarrow} \mathbb{Z}_n^*$$

$$A=\gamma^{\alpha}$$

$$b\overset{\$}{\leftarrow}\mathbb{Z}_p^* \ B=\gamma^b$$

$$B=\gamma^b$$

 $\mathsf{pk}: \mathsf{prime}\ p \ \mathsf{and}\ \mathsf{generator}\ \gamma \ \mathsf{of}\ \mathsf{a}\ \mathsf{cyclic}\ \mathsf{group}\ C_p$

Alice

$$a \overset{\$}{\leftarrow} \mathbb{Z}_{p}^{*}$$

$$A = \gamma^{a}$$

$$A \longrightarrow$$

$$b\overset{\$}{\leftarrow}\mathbb{Z}_p^* \ B=\gamma^b$$

$$B=\gamma^b$$

 $\mathsf{pk}: \mathsf{prime}\ p \ \mathsf{and}\ \mathsf{generator}\ \gamma \ \mathsf{of}\ \mathsf{a}\ \mathsf{cyclic}\ \mathsf{group}\ C_p$

Alice

Bob

$$a \overset{\$}{\leftarrow} \mathbb{Z}_p^*$$

$$A = \gamma'$$

B

$$\mathbf{key} = B^a$$

 $b\overset{\$}{\leftarrow}\mathbb{Z}_p^* \ B=\gamma^b$

$$B=\gamma^b$$

 $\mathsf{pk}: \mathsf{prime}\ p \ \mathsf{and}\ \mathsf{generator}\ \gamma \ \mathsf{of}\ \mathsf{a}\ \mathsf{cyclic}\ \mathsf{group}\ C_p$

Alice

$$a \overset{\$}{\leftarrow} \mathbb{Z}_p^* \ A = \gamma^a$$

$$A=\gamma^{lpha}$$

$$\mathbf{key} = B^a$$

$$\stackrel{A}{\longrightarrow}$$

$$\stackrel{A}{\longrightarrow}$$

$$b\overset{\$}{\leftarrow}\mathbb{Z}_p^* \ B=\gamma^b$$

$$B=\gamma^b$$

$$\mathbf{key} = A^b$$

 $\mathsf{pk}: \mathsf{prime}\ p \ \mathsf{and}\ \mathsf{generator}\ \gamma \ \mathsf{of}\ \mathsf{a}\ \mathsf{cyclic}\ \mathsf{group}\ C_p$

Alice

$$a \overset{\$}{\leftarrow} \mathbb{Z}_n^*$$

$$A=\gamma^a$$

$$\mathbf{key} = B^a$$

*

 $b \overset{\$}{\leftarrow} \mathbb{Z}_p^*$

Bob

$$B=\gamma^b$$

 $\mathbf{key} = A^b$

 $\mathsf{pk}: \mathsf{prime}\ p \ \mathsf{and}\ \mathsf{generator}\ \gamma \ \mathsf{of}\ \mathsf{a}\ \mathsf{cyclic}\ \mathsf{group}\ C_p$

Bob

Alice

$$a \stackrel{\$}{\leftarrow} \mathbb{Z}_p^*$$

$$A=\gamma^a$$

$$\mathbf{key} = B^a$$

b

$$B=\gamma^b$$

$$\mathbf{key} = A^b$$

Correctness: $A^b = \gamma^{ab} = \gamma^{ba} = B^a$.

B

 $\mathsf{pk}: \mathsf{prime}\ p \ \mathsf{and}\ \mathsf{generator}\ \gamma \ \mathsf{of}\ \mathsf{a}\ \mathsf{cyclic}\ \mathsf{group}\ C_p$

Alice

Bob

$$egin{array}{c} egin{array}{c} \$ & \mathbb{Z}_p^* \ A = \gamma^a \end{array} \hspace{2cm} A$$

$$\stackrel{A}{\longrightarrow}$$

B

$$b \overset{\$}{\leftarrow} \mathbb{Z}_p^*$$

$$B=\gamma^b$$

$$\mathbf{key} = B^a$$

$$\mathbf{key} = A^b$$

 $\mathsf{pk}: \mathsf{prime}\ p \ \mathsf{and}\ \mathsf{generator}\ {\color{gray}\boldsymbol{\gamma}}\ \mathsf{of}\ \mathsf{a}\ \mathsf{cyclic}\ \mathsf{group}\ C_p$

Alice

\$	77.*	
$a \leftarrow$	\mathbb{Z}_p	

$$A=\gamma^a$$

$$\mathbf{key} = B^a$$

$$\stackrel{f{\Lambda}}{=}$$

 $b \overset{\$}{\leftarrow} \mathbb{Z}_p^*$

Bob

$$B=\gamma^b$$

 $\mathbf{key} = A^b$

 $\mathsf{pk}: \mathsf{prime}\ p \ \mathsf{and}\ \mathsf{generator}\ \gamma \ \mathsf{of}\ \mathsf{a}\ \mathsf{cyclic}\ \mathsf{group}\ C_p$

Bob

$$a \overset{\$}{\leftarrow} \mathbb{Z}_p^*$$

$$A=\gamma^{a}$$

$$\mathbf{key} = B^a$$

(Given γ, γ^a , it's hard to solve a!)

$$\stackrel{A}{\longrightarrow}$$

$$b \overset{\$}{\leftarrow} \mathbb{Z}_p^*$$

$$B=\gamma^b$$

$$\mathbf{key} = A^b$$

 $\mathsf{pk}: \mathsf{prime}\ p \ \mathsf{and}\ \mathsf{generator}\ \gamma \ \mathsf{of}\ \mathsf{a}\ \mathsf{cyclic}\ \mathsf{group}\ C_p$

Alice

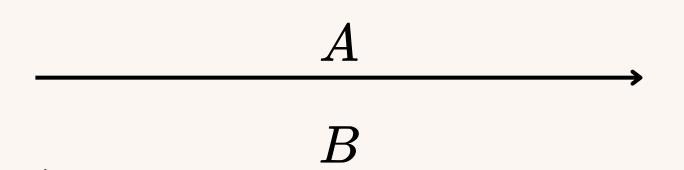
$$a \overset{\$}{\leftarrow} \mathbb{Z}_p^*$$

$$A=\gamma^a$$

$$\mathbf{key} = B^a$$

Discrete Log Assumption

Given γ, γ^a , it's hard to solve a!



Bob

$$b \overset{\$}{\leftarrow} \mathbb{Z}_p^* \ B = \gamma^b$$

$$B=\gamma^b$$

$$\mathbf{key} = A^b$$

 $\mathsf{pk}:s\in S$

 $\mathsf{pk}:s\in S$

$$g \overset{\$}{\leftarrow} G$$

$$A = s * g$$

 $\mathsf{pk}:s\in S$

$$g \overset{\$}{\leftarrow} G$$

$$A = s * g$$

$$h \overset{\$}{\leftarrow} G$$

$$B = s * h$$

 $\mathsf{pk}:s\in S$

Bob

$$g \overset{\$}{\leftarrow} G$$

$$A = s * g$$

 $\stackrel{A}{\longrightarrow}$

$$h \overset{\$}{\leftarrow} G$$

$$B = s * h$$

Alice

 $\mathsf{pk}:s\in S$

Bob

$$g \overset{\$}{\leftarrow} G$$

$$A = s * g$$

A

B

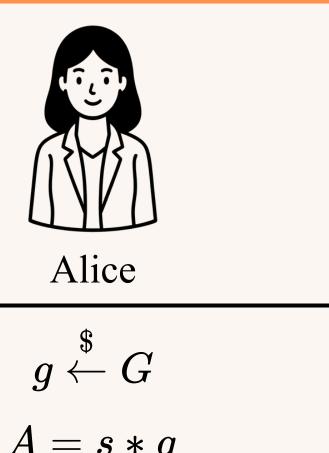
 $h \overset{\$}{\leftarrow} G$

$$B = s * h$$

$$\mathbf{key} = B * g$$

kev -

$$\mathbf{key} = A * h$$



 $\mathsf{pk}:s\in S$

Bob

$$g \leftarrow G$$
 $A = s * g$ A

 $h \overset{\$}{\leftarrow} G$

$$B = s * h$$

$$\mathbf{key} = B * g$$

$$\mathbf{key} = A * h$$

Correctness: B * g = s * hg = s * gh = A * h.

B

 $\mathsf{pk}:s\in S$

Bob

$$g \overset{\$}{\leftarrow} G$$

$$A = s * g$$

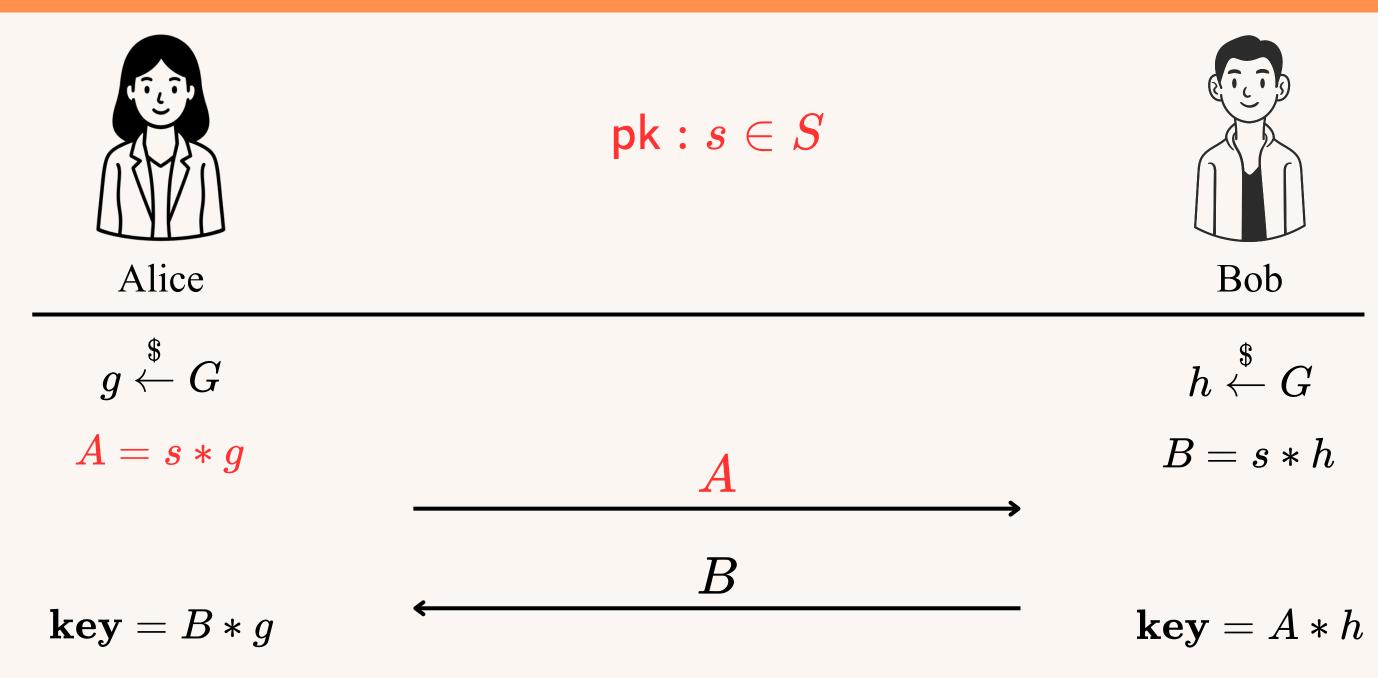
$$\mathbf{key} = B * g$$

 $A \longrightarrow$

 $h \overset{\$}{\leftarrow} G$

$$B = s * h$$

$$\mathbf{key} = A * h$$



 $\mathsf{pk}:s\in S$

Bob

$$egin{aligned} g &\stackrel{\$}{\leftarrow} G \ A &= s * g \end{aligned}$$

A

B

$$h \overset{\$}{\leftarrow} G$$

$$B = s * h$$

$$\mathbf{key} = B * g$$

$$\mathbf{key} = A * h$$

 $\mathsf{pk}:s\in S$

Bob

$$a \stackrel{\$}{\leftarrow} G$$

(Given s, s * g it's hard to solve g!)

B

$$h \overset{\$}{\leftarrow} G$$

$$A = s * g$$

 \xrightarrow{A}

B = s * h

 $\mathbf{key} = B * g$

 $\mathbf{key} = A * h$

 $\mathsf{pk}:s\in S$

Alice

$$g \overset{\$}{\leftarrow} G$$

A = s * q

 $\mathbf{key} = B * g$

One-way Hardness Assumption 1

Given s, s * g it's hard to solve g!

$$A \longrightarrow$$

B

Bob

$$h \overset{\$}{\leftarrow} G$$

$$B = s * h$$

$$\mathbf{key} = A * h$$

¹ [Brassard-Yung, Crypto, 90]

 $\mathsf{pk}:s\in S$

Alice

$$g \overset{\$}{\leftarrow} G$$

A = s * g

One-way Hardness Assumption¹ Given s, s * g it's hard to solve g!

 $h \overset{\$}{\leftarrow} G$

$$B = s * h$$

$$\mathbf{key} = B * g$$

B

$$\mathbf{key} = A * h$$

Good candidate for instantiation

¹ [Brassard-Yung, Crypto, 90]

 $\mathsf{pk}:s\in S$

Alice

$$g \overset{\$}{\leftarrow} G$$

A = s * g

One-way Hardness Assumption¹ Given s, s * g it's hard to solve g!

 $h \overset{\$}{\leftarrow} G$

B = s * h

$$\mathbf{key} = B * g$$

B

$$\mathbf{key} = A * h$$

Good candidate for instantiation

$$S=C_p\setminus \mathrm{id}$$

$$G = \operatorname{Aut}(C_p)$$

Correctness: B * g = s * hg = s * gh = A * h.

¹ [Brassard-Yung, Crypto, 90]

 $\mathsf{pk}:s\in S$

Bob

 $h \overset{\$}{\leftarrow} G$

B = s * h

Alice

$$g \overset{\$}{\leftarrow} G$$

A = s * g

One-way Hardness Assumption¹

B

 $\mathbf{key} = B * g$

Given s, s * g it's hard to solve g!

$$\xrightarrow{A}$$

 $\mathbf{key} = A * h$

Correctness:
$$B * g = s * hg = s * gh = A * h$$
.

Good candidate for instantiation

$$S=C_p\setminus \mathrm{id}$$

$$G=\operatorname{Aut}(C_p)$$

¹ [Brassard-Yung, Crypto, 90]

 $\mathsf{pk}:s\in S$

Alice

$$g \overset{\$}{\leftarrow} G$$

A = s * g

One-way Hardness Assumption¹ Given s, s * g it's hard to solve g!

$$h \overset{\$}{\leftarrow} G$$

Bob

B = s * h

$$\mathbf{key} = B * g$$

B

 $\mathbf{key} = A * h$

Good candidate for instantiation

$$S=C_p\setminus \operatorname{id}$$

$$G = \operatorname{Aut}(C_p)$$

Correctness: B * g = s * hg = s * gh = A * h.

¹ [Brassard-Yung, Crypto, 90]

 $\mathsf{pk}:s\in S$

Bob

$$g \overset{\$}{\leftarrow} G$$

$$A = s * g$$

$$\mathbf{key} = B * g$$

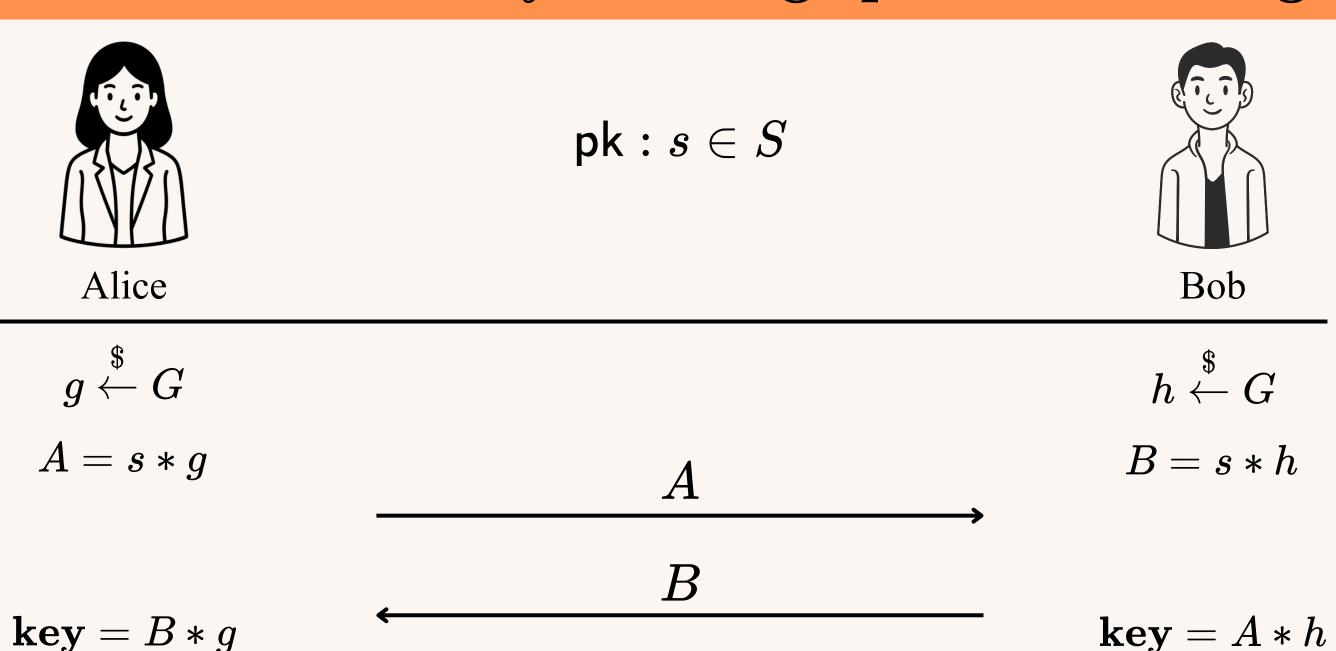
 $A \longrightarrow$

 $h \overset{\$}{\leftarrow} G$

$$B = s * h$$

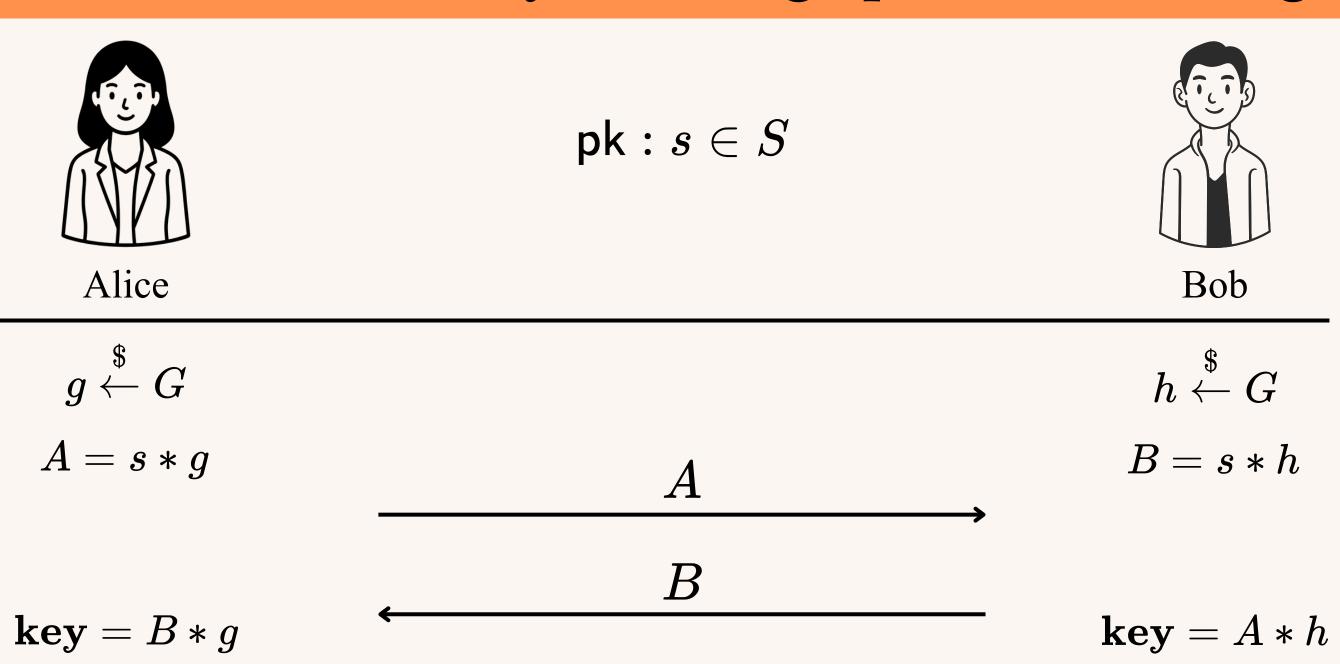
$$\mathbf{key} = A * h$$

Correctness: B * g = s * hg = s * gh = A * h.



Correctness: B * g = s * hg = s * gh = A * h.

Beyond commutativity?



Correctness: B * g = s * hg = s * gh = A * h.

Idea: treating this as a law in a group!

A law in a group G is an equation that is satisfied by any assignments of variables by group elements in G.

A law in a group G is an equation that is satisfied by any assignments of variables by group elements in G.

• ab = ba is a law in an abelian group.

A law in a group G is an equation that is satisfied by any assignments of variables by group elements in G.

• ab = ba is a law in an abelian group.

• $aba^{-1}b^{-1}cdc^{-1}d^{-1} = cdc^{-1}d^{-1}aba^{-1}b^{-1}$ is a law in a metabelian group.

A law in a group G is an equation that is satisfied by any assignments of variables by group elements in G.

• ab = ba is a law in an abelian group.

• $aba^{-1}b^{-1}cdc^{-1}d^{-1} = cdc^{-1}d^{-1}aba^{-1}b^{-1}$ is a law in a metabelian group. [a,b], [c,d] = [c,d][a,b]

A law in a group G is an equation that is satisfied by any assignments of variables by group elements in G.

• ab = ba is a law in an abelian group.

• $aba^{-1}b^{-1}cdc^{-1}d^{-1} = cdc^{-1}d^{-1}aba^{-1}b^{-1}$ is a law in a metabelian group.

• $u(a,b,c,\ldots) = v(a,b,c,\ldots)$ is a law in a group.

A law in a group G is an equation that is satisfied by any assignments of variables by group elements in G.

• ab = ba is a law in an abelian group.

• $aba^{-1}b^{-1}cdc^{-1}d^{-1} = cdc^{-1}d^{-1}aba^{-1}b^{-1}$ is a law in a metabelian group.

• $u(a,b,c,\ldots) = v(a,b,c,\ldots)$ is a law in a group.

A law in a group G is an equation that is satisfied by any assignments of variables by group elements in G.

• ab = ba is a law in an abelian group.

• $aba^{-1}b^{-1}cdc^{-1}d^{-1} = cdc^{-1}d^{-1}aba^{-1}b^{-1}$ is a law in a metabelian group.

 $ullet u(a,b,c,\ldots)=v(a,b,c,\ldots)$ is a law in a group. word: e.g., $a^2b^3a^{-5}c^2b^7$

 $\mathsf{pk}: s_0 \in S$

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Alice

$$g \overset{\$}{\leftarrow} G$$

$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ ext{for any } x,y\in G$$

$$h \overset{\$}{\leftarrow} G$$

Alice

$$g \overset{\$}{\leftarrow} G$$

 $\mathsf{pk}: s_0 \in S$

$$egin{aligned} oldsymbol{y^{b_1}} x^{a_1} \dots y^{b_k} x^{a_k} &= x^{c_1} y^{d_1} \dots x^{c_\ell} y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

$$h \overset{\$}{\leftarrow} G$$

$$t_1=s_0\ast h^{b_1}$$

Alice

$$g \overset{\$}{\leftarrow} G$$

 $\mathsf{pk}: s_0 \in S$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ ext{for any } x,y\in G$$

 t_1

$$h \overset{\$}{\leftarrow} G$$

$$t_1=s_0\ast h^{b_1}$$

Alice

$$g \overset{\$}{\leftarrow} G$$

 $\mathsf{pk}: s_0 \in S$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

 t_1

$$s_1=t_1\ast g^{a_1}$$

$$h \overset{\$}{\leftarrow} G$$

$$t_1=s_0\ast h^{b_1}$$

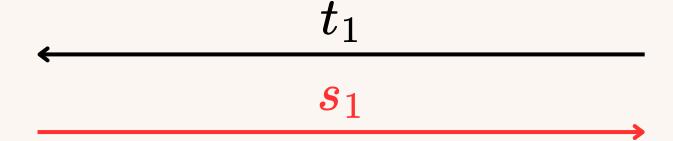
Alice

$$g \overset{\$}{\leftarrow} G$$

 $\mathsf{pk}: s_0 \in S$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ ext{for any } x,y\in G$$

$$s_1=t_1\ast g^{a_1}$$



$$h \overset{\$}{\leftarrow} G$$

$$t_1=s_0\ast h^{b_1}$$

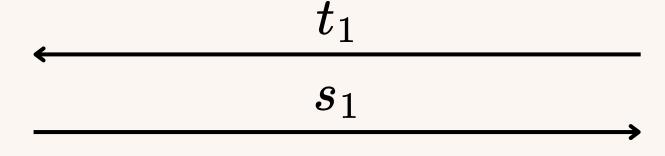
Alice

$$g \overset{\$}{\leftarrow} G$$

 $\mathsf{pk}: s_0 \in S$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

$$s_1=t_1\ast g^{a_1}$$



$$h \overset{\$}{\leftarrow} G$$

$$t_1=s_0\ast h^{b_1}$$

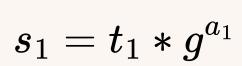
$$t_2=s_1\ast h^{b_2}$$

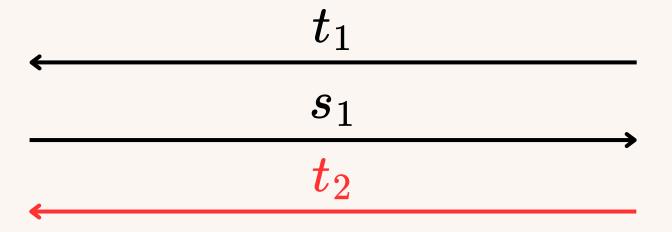
Alice

$$g \overset{\$}{\leftarrow} G$$

 $\mathsf{pk}: s_0 \in S$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ ext{for any } x,y\in G$$





$$h \overset{\$}{\leftarrow} G$$

$$t_1=s_0\ast h^{b_1}$$

$$t_2=s_1\ast h^{b_2}$$

Alice

$$g \overset{\$}{\leftarrow} G$$

 $\mathsf{pk}: s_0 \in S$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

 s_1

 t_2

Bob

$$h \overset{\$}{\leftarrow} G$$

$$\leftarrow$$
 t_1

 $s_1=t_1\ast g^{a_1}$

$$s_2=t_2\ast g^{a_2}$$

$$t_1=s_0*h^{b_1}$$

$$t_2=s_1\ast h^{b_2}$$

Alice

$$g \overset{\$}{\leftarrow} G$$

 $\mathsf{pk}: s_0 \in S$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

$$h \overset{\$}{\leftarrow} G$$

$$t_1=s_0\ast h^{b_1}$$

$$t_2 = s_1 \ast h^{b_2}$$

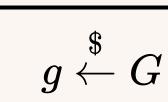
$$s_1=t_1\ast g^{a_1}$$

$$s_2=t_2\ast g^{a_2}$$

Alice

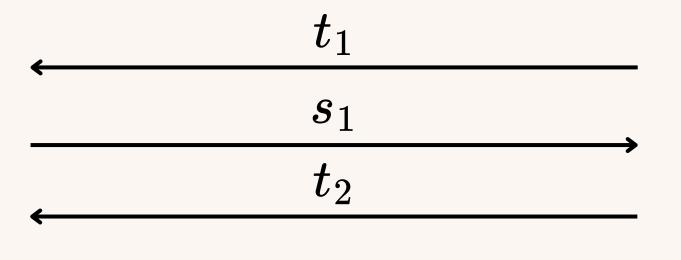
 $\mathsf{pk}: s_0 \in S$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ ext{for any } x,y\in G$$



$$s_1=t_1\ast g^{a_1}$$

$$s_2=t_2\ast g^{a_2}$$



$$h \overset{\$}{\leftarrow} G$$

$$t_1=s_0\ast h^{b_1}$$

$$t_2=s_1\ast h^{b_2}$$

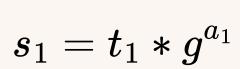
$$t_k = s_{k-1} \ast h^{b_k}$$

Alice

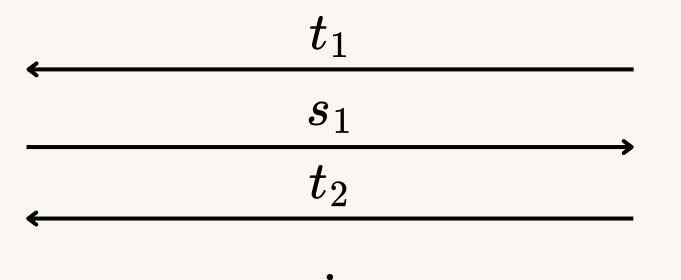
$$g \overset{\$}{\leftarrow} G$$

 $\mathsf{pk}: s_0 \in S$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ ext{for any } x,y\in G$$



$$s_2=t_2\ast g^{a_2}$$



$$h \overset{\$}{\leftarrow} G$$

$$t_1=s_0\ast h^{b_1}$$

$$t_2=s_1\ast h^{b_2}$$

$$t_k$$

$$t_k = s_{k-1} \ast h^{b_k}$$

Alice

$$g \overset{\$}{\leftarrow} G$$

 $\mathsf{pk}: s_0 \in S$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

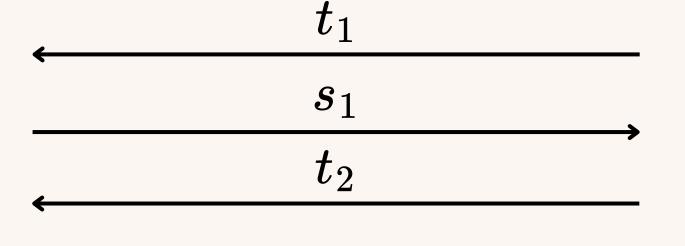
Bob

$$h \overset{\$}{\leftarrow} G$$

$$t_1=s_0\ast h^{b_1}$$

$$s_1=t_1\ast g^{a_1}$$

$$s_2=t_2\ast g^{a_2}$$



$$t_2=s_1\ast h^{b_2}$$

$$t_k$$

$$t_k = s_{k-1} \ast h^{b_k}$$

 $\mathbf{key}: s_k = t_k * g^{a_k}$

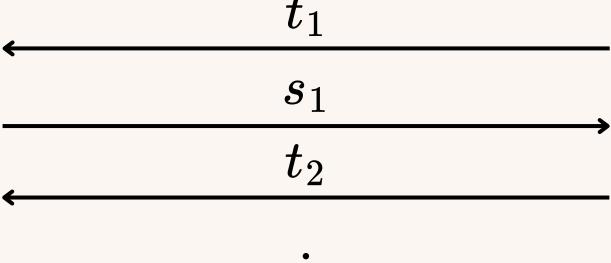
Alice

$$g \overset{\$}{\leftarrow} G$$

 $\mathsf{pk}: s_0 \in S$

$$egin{aligned} oldsymbol{y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

$$s_2=t_2\ast g^{a_2}$$



 t_k

$$h \overset{\$}{\leftarrow} G$$

$$t_1=s_0\ast h^{b_1}$$

$$t_2=s_1\ast h^{b_2}$$

$$t_k = s_{k-1} \ast h^{b_k}$$

$$\mathbf{key}: s_k = t_k * g^{a_k} = s_0 * h^{b_1} g^{a_1} \dots h^{b_k} g^{a_k}$$

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} oldsymbol{y}^{b_1} oldsymbol{x}^{a_1} \dots oldsymbol{y}^{b_k} oldsymbol{x}^{a_k} = oldsymbol{x}^{oldsymbol{c}_1} oldsymbol{y}^{d_1} \dots oldsymbol{x}^{c_\ell} oldsymbol{y}^{d_\ell} \ ext{for any } x,y \in G \end{aligned}$$

$$s_1' = s_0 * g^{c_1}$$

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

$$s_1'=s_0*g^{c_1} \ s_1'$$

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} oldsymbol{y}^{b_1} x^{a_1} \dots y^{b_k} x^{a_k} &= x^{c_1} oldsymbol{y^{d_1}} \dots x^{c_\ell} y^{d_\ell} \ & ext{for any } x, y \in G \end{aligned}$$

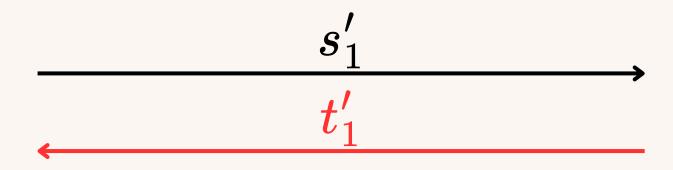
$$s_1' = s_0 * g^{c_1}$$
 s_1'

$$t_1'=s_1'\ast h^{d_1}$$

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

$$s_1'=s_0\ast g^{c_1}$$



$$t_1'=s_1'\ast h^{d_1}$$

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

$$s_1'=s_0\ast g^{c_1}$$

$$s_2'=t_1'\ast g^{c_2}$$

$$t_1'$$

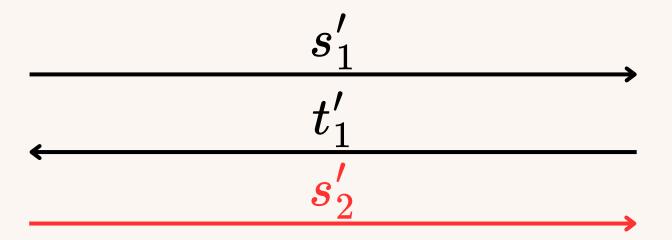
$$t_1'=s_1'\ast h^{d_1}$$

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

$$s_1'=s_0\ast g^{c_1}$$

$$s_2'=t_1'\ast g^{c_2}$$



$$t_1'=s_1'\ast h^{d_1}$$

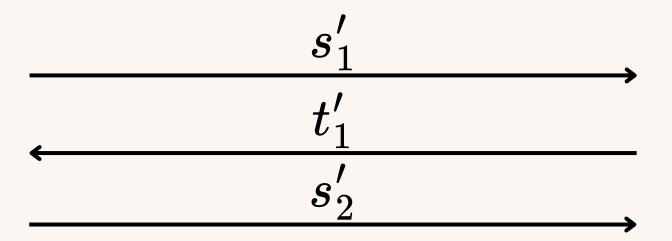
$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

Bob

$$s_1'=s_0\ast g^{c_1}$$

$$s_2'=t_1'\ast g^{c_2}$$



$$t_1'=s_1'\ast h^{d_1}$$

$$t_2'=s_2'\ast h^{d_2}$$

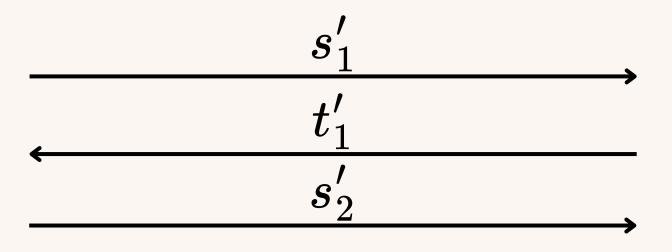
$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

Bob

$$s_1'=s_0\ast g^{c_1}$$

$$s_2'=t_1'\ast g^{c_2}$$



$$t_1'=s_1'\ast h^{d_1}$$

$$t_2'=s_2'\ast h^{d_2}$$

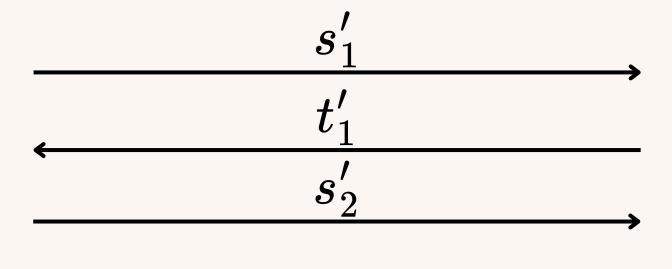
•

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} oldsymbol{y}^{b_1} oldsymbol{x}^{a_1} \dots oldsymbol{y}^{b_k} oldsymbol{x}^{a_k} = oldsymbol{x}^{c_1} oldsymbol{y}^{d_1} \dots oldsymbol{x}^{oldsymbol{c}_\ell} oldsymbol{y}^{d_\ell} \ ext{for any } oldsymbol{x}, oldsymbol{y} \in G \end{aligned}$$

$$s_1'=s_0\ast g^{c_1}$$

$$s_2'=t_1'\ast g^{c_2}$$



$$t_1'=s_1'\ast h^{d_1}$$

$$t_2'=s_2'\ast h^{d_2}$$

$$s'_\ell = t'_{\ell-1} * g^{d_\ell}$$

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} oldsymbol{y}^{b_1} oldsymbol{x}^{a_1} \dots oldsymbol{y}^{b_k} oldsymbol{x}^{a_k} = oldsymbol{x}^{c_1} oldsymbol{y}^{d_1} \dots oldsymbol{x}^{c_\ell} oldsymbol{y}^{d_\ell} \ & ext{for any } oldsymbol{x}, oldsymbol{y} \in G \end{aligned}$$

$$s_1'=s_0\ast g^{c_1}$$

$$s_2'=t_1'\ast g^{c_2}$$

$$\begin{array}{c} s_1' \\ \hline t_1' \\ \hline s_2' \\ \hline \end{array}$$

$$t_1'=s_1'\ast h^{d_1}$$

$$t_2'=s_2'\ast h^{d_2}$$

$$s'_\ell = t'_{\ell-1} * g^{d_\ell}$$

$$\ell$$

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} oldsymbol{y}^{b_1} oldsymbol{x}^{a_1} \dots oldsymbol{y}^{b_k} oldsymbol{x}^{a_k} = oldsymbol{x}^{c_1} oldsymbol{y}^{d_1} \dots oldsymbol{x}^{c_\ell} oldsymbol{y}^{d_\ell} \ ext{for any } oldsymbol{x}, oldsymbol{y} \in G \end{aligned}$$

Bob

$$s_1'=s_0\ast g^{c_1}$$

$$s_2'=t_1'\ast g^{c_2}$$

$$\begin{array}{c} s_1' \\ \hline t_1' \\ \hline s_2' \\ \hline \end{array}$$

$$t_1'=s_1'\ast h^{d_1}$$

$$t_2'=s_2'\ast h^{d_2}$$

$$s'_\ell = t'_{\ell-1} * g^{d_\ell}$$

$$s'_\ell$$

 $\mathbf{key}: t'_\ell = s'_\ell * h^{d_\ell}$

$$\mathsf{pk}: s_0 \in S$$

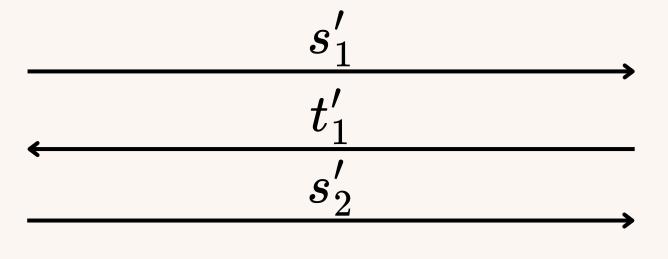
$$egin{aligned} oldsymbol{y}^{b_1} oldsymbol{x}^{a_1} \dots oldsymbol{y}^{b_k} oldsymbol{x}^{a_k} = oldsymbol{x}^{oldsymbol{c}_1} oldsymbol{y}^{oldsymbol{d}_1} \dots oldsymbol{x}^{oldsymbol{c}_\ell} oldsymbol{y}^{oldsymbol{d}_\ell} \ ext{for any } oldsymbol{x}, oldsymbol{y} \in G \end{aligned}$$

Bob

$$s_1'=s_0\ast g^{c_1}$$

$$s_2'=t_1'\ast g^{c_2}$$

$$s'_\ell = t'_{\ell-1} * g^{d_\ell}$$



$$t_1'=s_1'\ast h^{d_1}$$

$$t_2'=s_2'\ast h^{d_2}$$

$$s'_{\ell}$$

$$\mathbf{key}: t'_\ell = s'_\ell * h^{d_\ell} = s_0 * extbf{ extit{g}}^{ extit{c}_1} h^{d_1} \dots extbf{ extit{g}}^{ extit{c}_\ell} h^{d_\ell}$$

Alice

$$g \overset{\$}{\leftarrow} G$$

 $\mathsf{pk}: s_0 \in S$

$$egin{aligned} oldsymbol{y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

Bob

$$h \overset{\$}{\leftarrow} G$$



$$\mathbf{key}: s_k = t_k * g^{a_k} = s_0 * h^{b_1} g^{a_1} \dots h^{b_k} g^{a_k}$$

$$\mathbf{key}: t'_\ell = s'_\ell * h^{d_\ell} = s_0 * g^{c_1}h^{d_1}\dots g^{c_\ell}h^{d_\ell}$$

Alice

$$g \overset{\$}{\leftarrow} G$$

 $\mathsf{pk}: s_0 \in S$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ ext{for any } x,y\in G$$

Bob

$$h \overset{\$}{\leftarrow} G$$

This can be generalised to the multi-variable case!

$$\mathbf{key}: s_k = t_k * g^{a_k} = s_0 * h^{b_1} g^{a_1} \dots h^{b_k} g^{a_k}$$

$$\mathbf{key}: t'_\ell = s'_\ell * h^{d_\ell} = s_0 * g^{c_1}h^{d_1}\dots g^{c_\ell}h^{d_\ell}$$

Alice

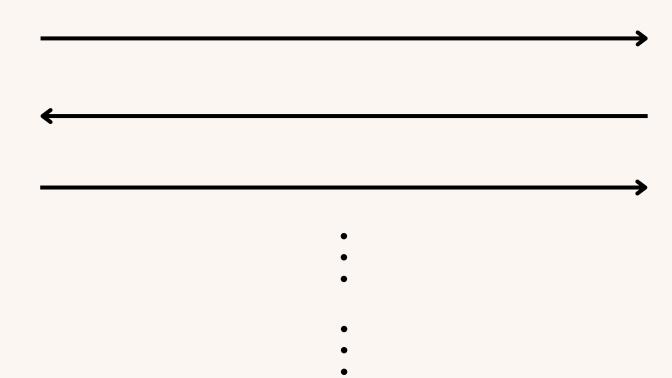
$$g \overset{\$}{\leftarrow} G$$

 $\mathsf{pk}: s_0 \in S$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} = x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$

Bob

$$h \overset{\$}{\leftarrow} G$$



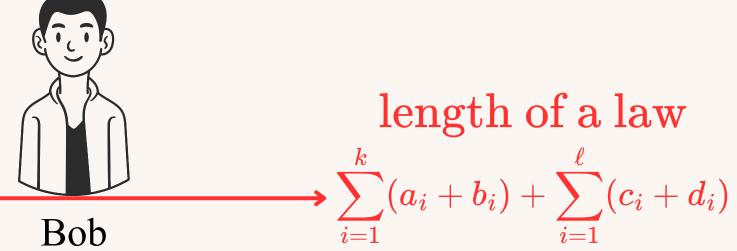
$$\mathbf{key}: s_k = t_k * g^{a_k} = s_0 * h^{b_1} g^{a_1} \dots h^{b_k} g^{a_k}$$

$$\mathbf{key}: t'_{\ell} = s'_{\ell} * h^{d_{\ell}} = s_0 * g^{c_1} h^{d_1} \dots g^{c_{\ell}} h^{d_{\ell}}$$

 $g \overset{\$}{\leftarrow} G$

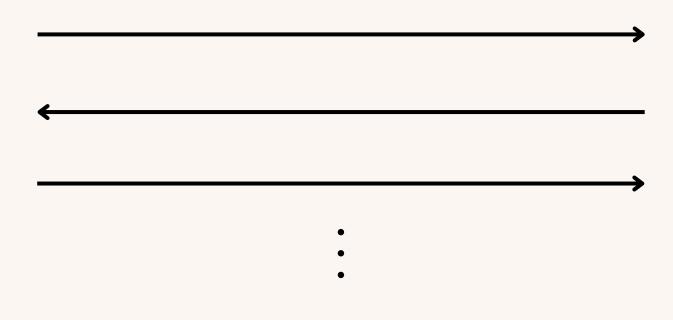
$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} = x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$



$$\operatorname{length} \operatorname{of} \operatorname{a} \operatorname{law}$$

$$box{Bob} i=1$$
 $box{Bob} i=1$ $box{Bob} i=1$



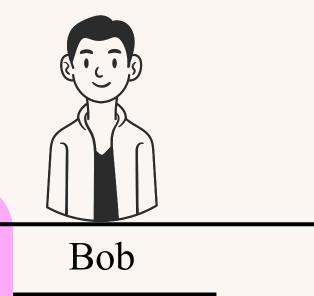
$$\mathbf{key}: s_k = t_k * g^{a_k} = s_0 * h^{b_1} g^{a_1} \dots h^{b_k} g^{a_k}$$

$$\mathbf{key}: t'_{\ell} = s'_{\ell} * h^{d_{\ell}} = s_0 * g^{c_1} h^{d_1} \dots g^{c_{\ell}} h^{d_{\ell}}$$

 $g \overset{\$}{\leftarrow} G$

$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$



$$oldsymbol{
ightarrow} \sum_{i=1}^k (a_i + b_i) + \sum_{i=1}^\ell (c_i + d_i)$$

$$h \overset{\$}{\leftarrow} G$$

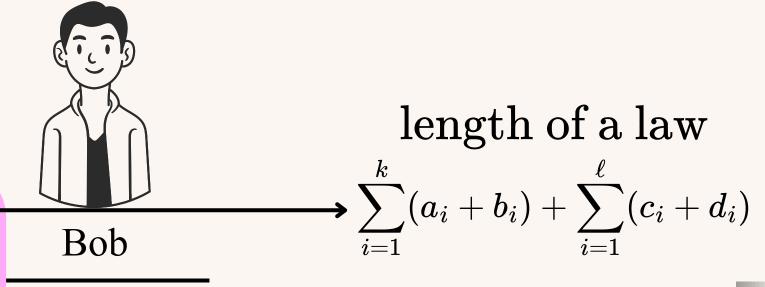
Multi-variable laws can be turned into 2-variable laws by a polynomial blow-up in length [Bradford-Thom, *TAMS*, 19]

$$\mathbf{key}: s_k = t_k * g^{a_k} = s_0 * h^{b_1} g^{a_1} \dots h^{b_k} g^{a_k}$$

$$\mathbf{key}: t'_{\ell} = s'_{\ell} * h^{d_{\ell}} = s_0 * g^{c_1} h^{d_1} \dots g^{c_{\ell}} h^{d_{\ell}}$$

$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$

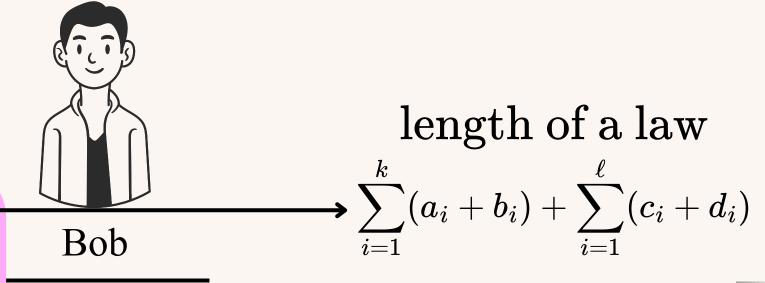


What kind of (non-abelian) Group should we choose?

 $\mathbf{key}: t'_{\ell} = s'_{\ell} * h^{d_{\ell}} = s_0 * g^{c_1} h^{d_1} \dots g^{c_{\ell}} h^{d_{\ell}}$

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

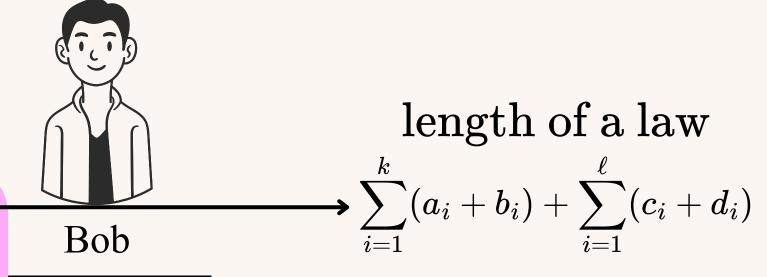


What kind of (non-abelian) Group should we choose?

1. One-way hardness (with multiple copies)

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$

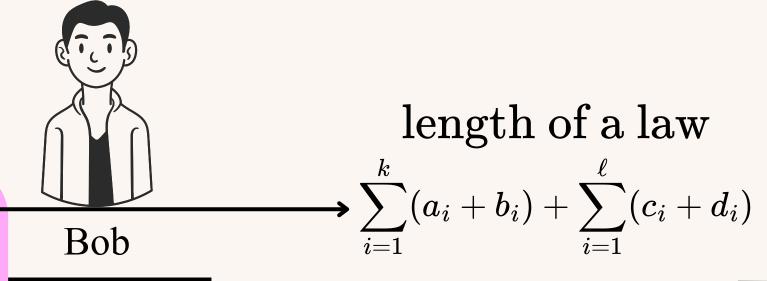


What kind of (non-abelian) Group should we choose?

- 1. One-way hardness (with multiple copies)
- 2. With a law whose length is as short as possible

$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$



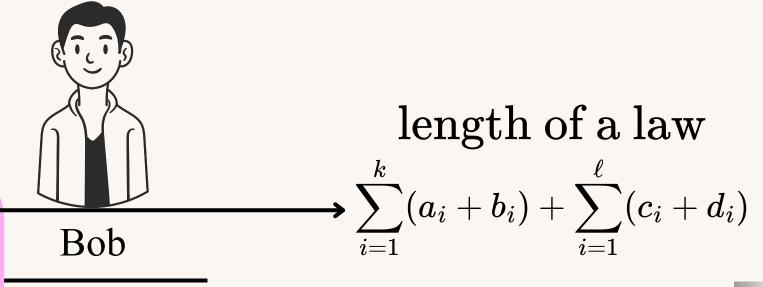
What kind of (non-abelian) Group should we choose?

- 1. One-way hardness (with multiple copies)
- 2. With a law whose length is as short as possible

 $\mathbf{key}: t'_\ell = s'_\ell * h^{d_\ell} = s_0 * g^{c_1}h^{d_1}\dots g^{c_\ell}h^{d_\ell}$

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$



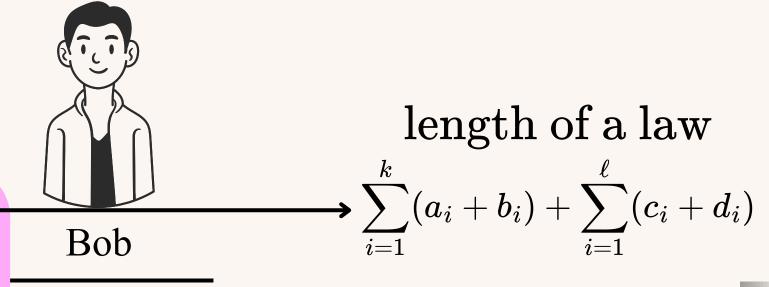
What kind of (non-abelian) Group should we choose?

- 1. One-way hardness (with multiple copies)
- 2. With a law whose length is as short as possible

Metabelian groups

$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$



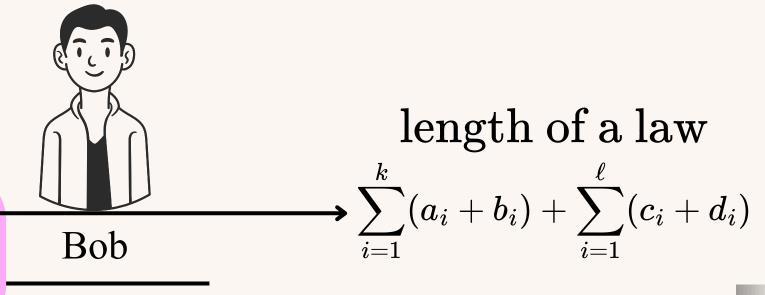
What kind of (non-abelian) Group should we choose?

- 1. One-way hardness (with multiple copies)
- 2. With a law whose length is as short as possible

Metabelian groups

$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$



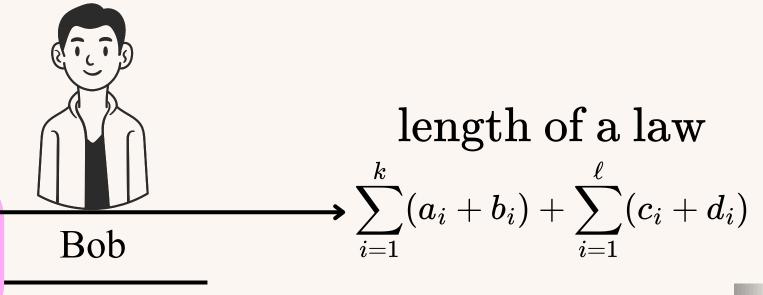
What kind of (non-abelian) Group should we choose?

- 1. One-way hardness (with multiple copies)
- 2. With a law whose length is as short as possible

Metabelian groups

$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$



What kind of (non-abelian) Group should we choose?

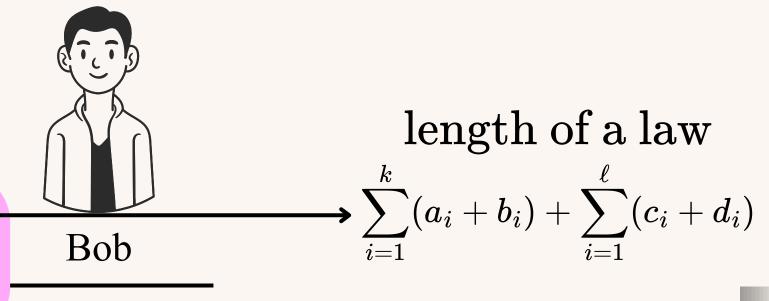
- 1. One-way hardness (with multiple copies)
- 2. With a law whose length is as short as possible

Metabelian groups

 $s_0 * g^{c_1} h^{d_1} \dots g^{c_\ell} h^{d_\ell}$

$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$



What kind of (non-abelian) Group should we choose?

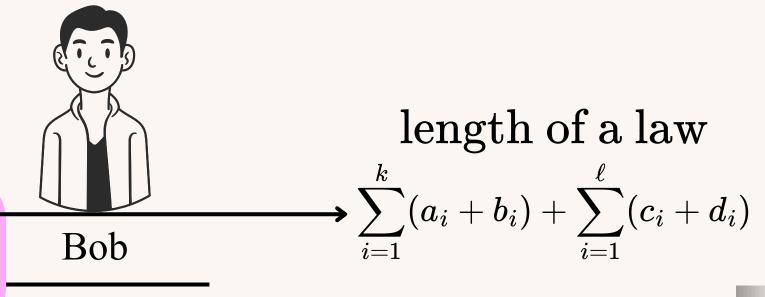
- 1. One-way hardness (with multiple copies)
- 2. With a law whose length is as short as possible

Highly non-abelian groups,

e.g., general linear groups

$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$



What kind of (non-abelian) Group should we choose?

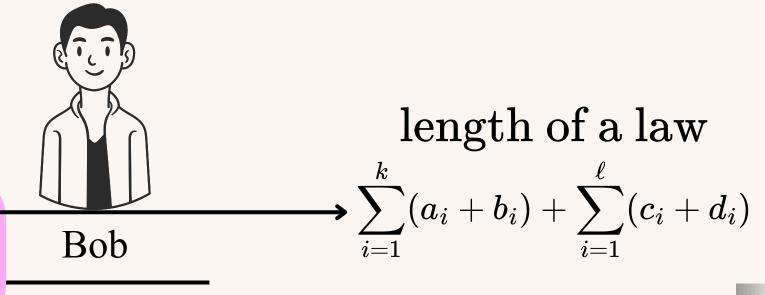
- 1. One-way hardness (with multiple copies)
 - 2. With a law whose length is as short as possible

Highly non-abelian groups,

e.g., general linear groups

$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$



What kind of (non-abelian) Group should we choose?

1. One-way hardness (with multiple copies)

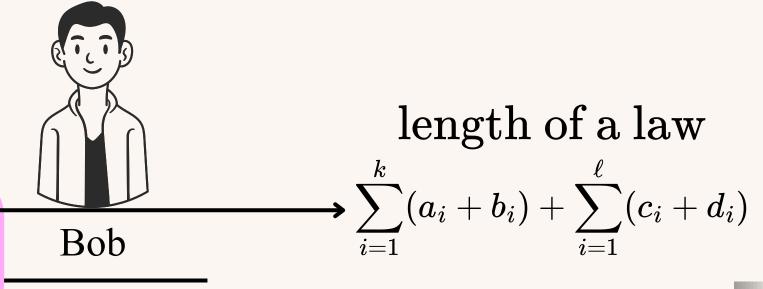
2. With a law whose length is as short as possible

Highly non-abelian groups,

e.g., general linear groups

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$



What kind of (non-abelian) Group should we choose?

1. One-way hardness (with multiple copies)

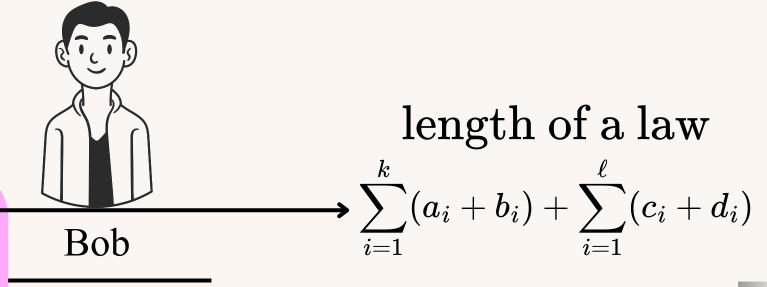
2. With a law whose length is as short as possible

Highly non-abelian groups, e.g., general linear groups

[Bradford-Thom, *JEMS*, 24] The length could be exponentially long!

$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$



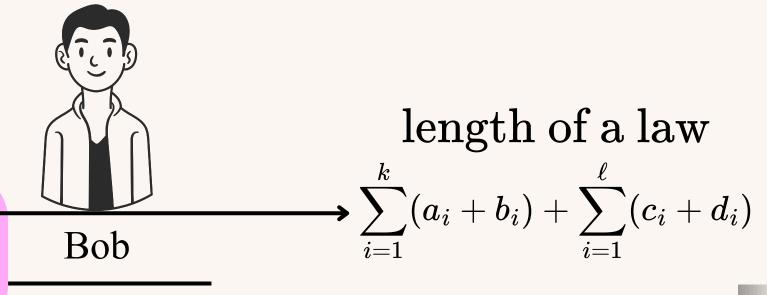
What kind of (non-abelian) Group should we choose?

- 1. One-way hardness (with multiple copies)
- 2. With a law whose length is as short as possible

Highly non-abelian groups,

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$



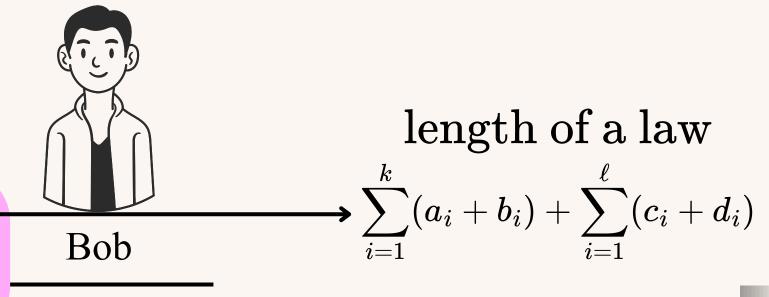
What kind of (non-abelian) Group should we choose?

- 1. One-way hardness (with multiple copies)
 - 2. With a law whose length is as short as possible

Highly non-abelian groups,

$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$



What kind of (non-abelian) Group should we choose?

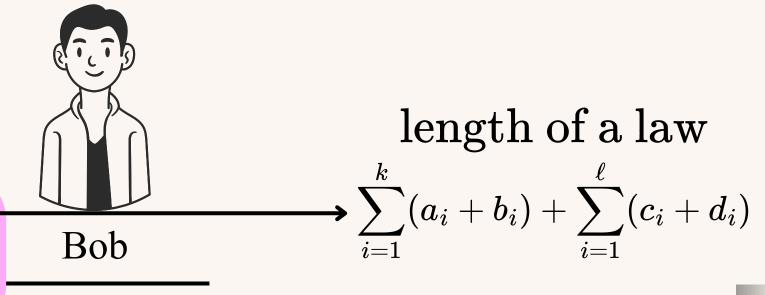
1. One-way hardness (with multiple copies)

2. With a law whose length is as short as possible

Highly non-abelian groups,

$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} = x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} - x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$



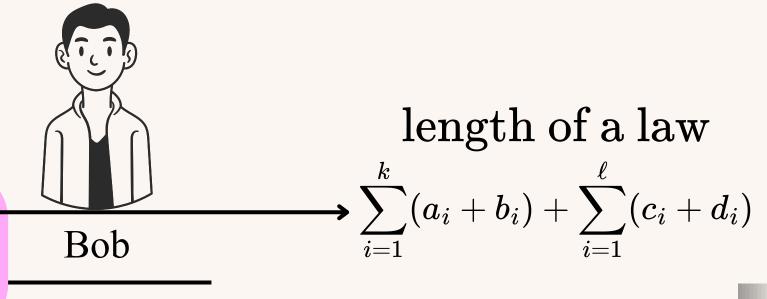
What kind of (non-abelian) Group should we choose?

- 1. One-way hardness (with multiple copies)
- 2. There is a short law with high probability

Highly non-abelian groups,

$$\mathsf{pk}: s_0 \in S$$

$$egin{aligned} y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} &= x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} \ & ext{for any } x,y \in G \end{aligned}$$



What kind of (non-abelian) Group should we choose?

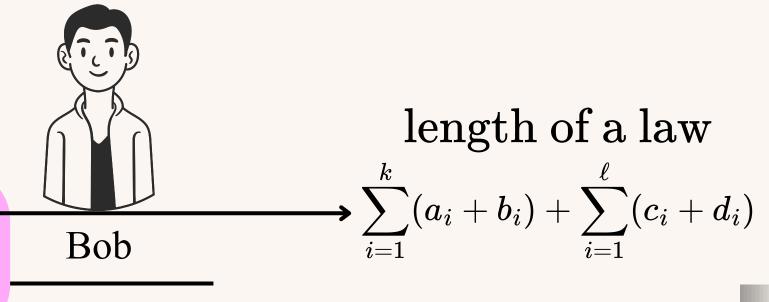
- 1. One-way hardness (with multiple copies)
- 2. There is a short law with high probability

$$(xy)^{\lceil n/2
ceil} = (y^{-1}x^{-1})^{\lfloor n/2
ceil} \ ext{i.e., } (xy)^n = ext{id}$$

Highly non-abelian groups,

$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k} = x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell} - x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$



What kind of (non-abelian) Group should we choose?

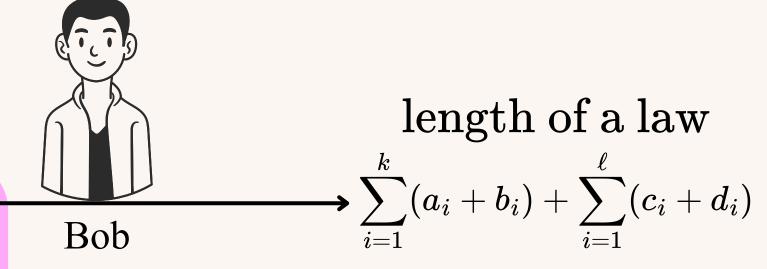
- 1. One-way hardness (with multiple copies)
- 2. There is a short law with high probability

$$(xy)^{\lceil n/2
ceil} = (y^{-1}x^{-1})^{\lfloor n/2
ceil} \ ext{i.e., } (xy)^n = ext{id}$$

Highly non-abelian groups, e.g., symmetric groups

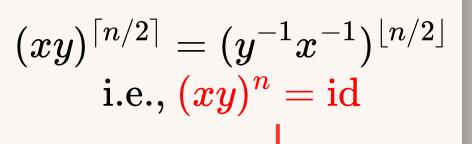
$$\mathsf{pk}: s_0 \in S$$

$$y^{b_1}x^{a_1}\dots y^{b_k}x^{a_k}=x^{c_1}y^{d_1}\dots x^{c_\ell}y^{d_\ell}$$
 for any $x,y\in G$

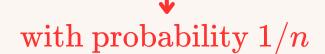


What kind of (non-abelian) Group should we choose?

- 1. One-way hardness (with multiple copies)
- 2. There is a short law with high probability



Highly non-abelian groups, e.g., symmetric groups



Notation:

ullet $\mathrm{M}(k imes n,\mathbb{F}): ext{ the set of all } k imes n ext{ matrices over } \mathbb{F}.$

Notation:

• $\mathrm{M}(k,\mathbb{F}): ext{ the set of all } k imes k ext{ matrices over } \mathbb{F}.$

Notation:

• $\mathrm{GL}(k,\mathbb{F})$: the general linear group of all $k \times k$ invertible matrices over \mathbb{F} .

Notation:

- $GL(k, \mathbb{F})$: the general linear group of all $k \times k$ invertible matrices over \mathbb{F} .
- $D(n, \mathbb{F})$: the diagonal group of all $n \times n$ invertible diagonal matrices over \mathbb{F} .

Notation:

- $\mathrm{GL}(k,\mathbb{F})$: the general linear group of all $k \times k$ invertible matrices over \mathbb{F} .
- $D(n, \mathbb{F})$: the diagonal group of all $n \times n$ invertible diagonal matrices over \mathbb{F} .
- $\mathrm{Mon}(n,\mathbb{F})$: the monomial group of all $n \times n$ monomial matrices over \mathbb{F} .

Notation:

- $\mathrm{GL}(k,\mathbb{F})$: the general linear group of all $k \times k$ invertible matrices over \mathbb{F} .
- $D(n, \mathbb{F})$: the diagonal group of all $n \times n$ invertible diagonal matrices over \mathbb{F} .
- $\mathrm{Mon}(n,\mathbb{F})$: the monomial group of all $n \times n$ monomial matrices over \mathbb{F} .
- S_n : the symmetric group of degree n.

Notation:

- $\mathrm{GL}(k,\mathbb{F})$: the general linear group of all $k \times k$ invertible matrices over \mathbb{F} .
- $D(n, \mathbb{F})$: the diagonal group of all $n \times n$ invertible diagonal matrices over \mathbb{F} .
- $\mathrm{Mon}(n,\mathbb{F})$: the monomial group of all $n \times n$ monomial matrices over \mathbb{F} .
- S_n : the symmetric group of degree n.

Problem (Linear Code Equivalence)

Notation:

- $\mathrm{GL}(k,\mathbb{F})$: the general linear group of all $k \times k$ invertible matrices over \mathbb{F} .
- $D(n, \mathbb{F})$: the diagonal group of all $n \times n$ invertible diagonal matrices over \mathbb{F} .
- $\mathrm{Mon}(n,\mathbb{F})$: the monomial group of all $n \times n$ monomial matrices over \mathbb{F} .
- S_n : the symmetric group of degree n.

```
Problem (Linear Code Equivalence)
For two generator matrices C_1, C_2 \in \mathrm{M}(k \times n, \mathbb{F}_q), determine if there is A \in \mathrm{GL}(k, \mathbb{F}_q) and M \in \mathrm{Mon}(n, \mathbb{F}_q) such that C_1 = AC_2M.
```

• How do we understand the action of A and M?

Notation:

- $\mathrm{GL}(k,\mathbb{F})$: the general linear group of all $k \times k$ invertible matrices over \mathbb{F} .
- $D(n, \mathbb{F})$: the diagonal group of all $n \times n$ invertible diagonal matrices over \mathbb{F} .
- $\mathrm{Mon}(n,\mathbb{F})$: the monomial group of all $n \times n$ monomial matrices over \mathbb{F} .
- S_n : the symmetric group of degree n.

- How do we understand the action of A and M?
- View 1 : $\operatorname{GL}(k,\mathbb{F}_q) \times \operatorname{Mon}(n,\mathbb{F}_q)$ acts on the set of all generator matrices in $\operatorname{M}(k \times n,\mathbb{F}_q)$.

Notation:

- $\mathrm{GL}(k,\mathbb{F})$: the general linear group of all $k \times k$ invertible matrices over \mathbb{F} .
- $D(n, \mathbb{F})$: the diagonal group of all $n \times n$ invertible diagonal matrices over \mathbb{F} .
- $\mathrm{Mon}(n,\mathbb{F})$: the monomial group of all $n \times n$ monomial matrices over \mathbb{F} .
- S_n : the symmetric group of degree n.

- How do we understand the action of A and M?
- View 1 : $\mathrm{GL}(k,\mathbb{F}_q) imes \mathrm{Mon}(n,\mathbb{F}_q)$ acts on the set of all generator matrices in $\mathrm{M}(k imes n,\mathbb{F}_q)$.
- View 2: $Mon(n, \mathbb{F}_q)$ acts on the set of all k-dimensional codes in \mathbb{F}_q^n .

Notation:

- $\mathrm{GL}(k,\mathbb{F})$: the general linear group of all $k \times k$ invertible matrices over \mathbb{F} .
- $D(n, \mathbb{F})$: the diagonal group of all $n \times n$ invertible diagonal matrices over \mathbb{F} .
- $\mathrm{Mon}(n,\mathbb{F})$: the monomial group of all $n \times n$ monomial matrices over \mathbb{F} .
- S_n : the symmetric group of degree n.

Problem (Linear Code Equivalence)
For two generator matrices $C_1, C_2 \in \mathrm{M}(k \times n, \mathbb{F}_q)$, determine if there is $A \in \mathrm{GL}(k, \mathbb{F}_q)$ and $M \in \mathrm{Mon}(n, \mathbb{F}_q)$ such that $C_1 = AC_2M$.

ullet Note that $M=DP, ext{ where } D\in \mathrm{D}(n,\mathbb{F}_q) ext{ and } P\in \mathrm{S}_n.$

Notation:

- $\mathrm{GL}(k,\mathbb{F})$: the general linear group of all $k\times k$ invertible matrices over \mathbb{F} .
- $D(n, \mathbb{F})$: the diagonal group of all $n \times n$ invertible diagonal matrices over \mathbb{F} .
- $\mathrm{Mon}(n,\mathbb{F})$: the monomial group of all $n \times n$ monomial matrices over \mathbb{F} .
- S_n : the symmetric group of degree n.

Problem (Linear Code Equivalence)
For two generator matrices $C_1, C_2 \in \mathrm{M}(k \times n, \mathbb{F}_q)$, determine if there is $A \in \mathrm{GL}(k, \mathbb{F}_q)$ and $M \in \mathrm{Mon}(n, \mathbb{F}_q)$ such that $C_1 = AC_2M$.

• Note that M=DP, where $D\in \mathrm{D}(n,\mathbb{F}_q)$ and $P\in \mathrm{S}_n$, then $AC_2M=AC_2DP$.

Notation:

- $\mathrm{GL}(k,\mathbb{F})$: the general linear group of all $k \times k$ invertible matrices over \mathbb{F} .
- $D(n, \mathbb{F})$: the diagonal group of all $n \times n$ invertible diagonal matrices over \mathbb{F} .
- $\mathrm{Mon}(n,\mathbb{F})$: the monomial group of all $n \times n$ monomial matrices over \mathbb{F} .
- S_n : the symmetric group of degree n.

- Note that M=DP, where $D\in \mathrm{D}(n,\mathbb{F}_q)$ and $P\in \mathrm{S}_n$, then $AC_2M=AC_2DP$.
- $\begin{array}{l} \bullet \ \, \text{Our view} : \textcolor{red}{\mathbf{S}_n} \ \, \text{acts on the set of } \mathbf{equivalence} \ \, \mathbf{classes} \ \, [C]_{\sim} := \{ACD: A \in \mathrm{GL}(k,\mathbb{F}_q), D \in \mathrm{D}(n,\mathbb{F}_q)\}, \\ \text{for every } C \in \mathrm{M}(k \times n,\mathbb{F}_q). \end{array}$

Notation:

- $\mathrm{GL}(k,\mathbb{F})$: the general linear group of all $k \times k$ invertible matrices over \mathbb{F} .
- $D(n, \mathbb{F})$: the diagonal group of all $n \times n$ invertible diagonal matrices over \mathbb{F} .
- $\mathrm{Mon}(n,\mathbb{F})$: the monomial group of all $n\times n$ monomial matrices over \mathbb{F} .
- S_n : the symmetric group of degree n.

- Note that M=DP, where $D\in \mathrm{D}(n,\mathbb{F}_q)$ and $P\in \mathrm{S}_n$, then $AC_2M=AC_2DP$.
- ullet Our view : S_n acts on the set of equivalence classes $[C]_\sim := \{ACD: A \in \mathrm{GL}(k,\mathbb{F}_q), D \in \mathrm{D}(n,\mathbb{F}_q)\},$ for every $C \in \mathrm{M}(k imes n,\mathbb{F}_q).$
- ullet Key properties : $[C]_{\sim}P=[CP]_{\sim}$ for any $P\in\mathrm{S}_n$.

 $ullet \ [C]_\sim := \{ACD: A \in \mathrm{GL}(k,\mathbb{F}_q), D \in \mathrm{D}(n,\mathbb{F}_q)\}.$

- $ullet \ [C]_\sim := \{ACD: A \in \mathrm{GL}(k,\mathbb{F}_q), D \in \mathrm{D}(n,\mathbb{F}_q)\}.$
- Alice and Bob send matrices in $[C]_{\sim}$, with randomly sampled A and D in each round.

- $ullet \ [C]_\sim := \{ACD: A \in \mathrm{GL}(k,\mathbb{F}_q), D \in \mathrm{D}(n,\mathbb{F}_q)\}.$
- Alice and Bob send matrices in $[C]_{\sim}$, with randomly sampled A and D in each round.
- ullet We give a canonical form algorithm to efficiently compute a representative in $[C]_{\sim}$.

- $ullet \ [C]_\sim := \{ACD: A \in \mathrm{GL}(k,\mathbb{F}_q), D \in \mathrm{D}(n,\mathbb{F}_q)\}.$
- Alice and Bob send matrices in $[C]_{\sim}$, with randomly sampled A and D in each round.
- ullet We give a canonical form algorithm to efficiently compute a representative in $[C]_{\sim}$.

• We propose the following new hardness assumption:

- $ullet \ [C]_\sim := \{ACD: A \in \mathrm{GL}(k,\mathbb{F}_q), D \in \mathrm{D}(n,\mathbb{F}_q)\}.$
- Alice and Bob send matrices in $[C]_{\sim}$, with randomly sampled A and D in each round.
- ullet We give a canonical form algorithm to efficiently compute a representative in $[C]_\sim.$
- We propose the following new hardness assumption:

```
Problem (Diagonal-masked Linear Code Equivalence) For generator matrices \{C_i: i \in [n]\} \subseteq \mathrm{M}(k \times n, \mathbb{F}_q), determine if there exist \{A_i: i \in [n-1]\} \subseteq \mathrm{GL}(k, \mathbb{F}_q), \{D_i: i \in [n-1]\} \subseteq \mathrm{D}(n, \mathbb{F}_q) and P \in \mathrm{S}_n such A_iC_iD_iP = C_{i+1} for all i \in [n-1]. If yes, compute such a permutation P.
```

- $ullet \ [C]_\sim := \{ACD: A \in \mathrm{GL}(k,\mathbb{F}_q), D \in \mathrm{D}(n,\mathbb{F}_q)\}.$
- ullet Alice and Bob send matrices in $[C]_{\sim}$, with randomly sampled A and D in each round.
- ullet We give a canonical form algorithm to efficiently compute a representative in $[C]_\sim.$
- We propose the following new hardness assumption:

```
Problem (Diagonal-masked Linear Code Equivalence) For generator matrices \{C_i: i \in [n]\} \subseteq \mathrm{M}(k \times n, \mathbb{F}_q), determine if there exist \{A_i: i \in [n-1]\} \subseteq \mathrm{GL}(k, \mathbb{F}_q), \{D_i: i \in [n-1]\} \subseteq \mathrm{D}(n, \mathbb{F}_q) \text{ and } P \in \mathrm{S}_n \text{ such } A_iC_iD_iP = C_{i+1} \text{ for all } i \in [n-1]. \text{ If yes, compute such a permutation } P.
```

• We also carry out Magma experiments to support the hardness.

Bob

What kind of Group and Set did we choose?

 $G = S_n$

$$S = \{ [C]_\sim : C \in \mathrm{M}(k imes n, \mathbb{F}_q) \}$$

$$(xy)^{\lceil n/2 \rceil} = (y^{-1}x^{-1})^{\lfloor n/2 \rfloor}$$
 for a large proportion of $x,y \in G$

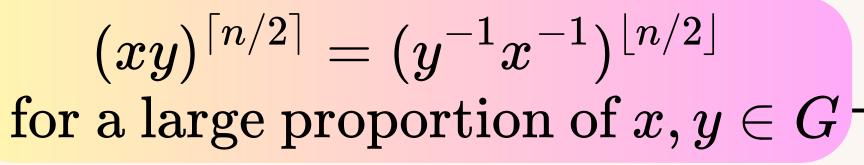
Bob

What kind of Group and Set did we choose?

- 1. One-way hardness (with multiple copies)
- 2. There is a short law with high probability

$$G = S_n$$

$$S=\{[C]_\sim:C\in\mathrm{M}(k imes n,\mathbb{F}_q)\}$$



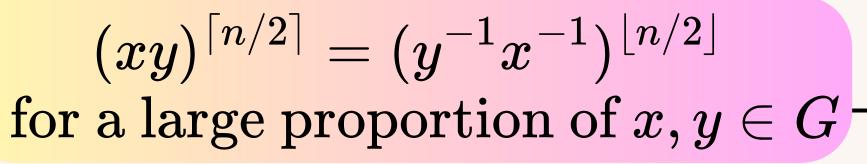
Bob

What kind of Group and Set did we choose?

- 1. One-way hardness (with multiple copies)
- 2. There is a short law with high probability

$$G = S_n$$

$$S = \{ [C]_\sim : C \in \mathrm{M}(k imes n, \mathbb{F}_q) \}$$



Bob

What kind of Group and Set did we choose?

1. One-way hardness (with multiple copies) OPEN

2. There is a short law with high probability

$$G = S_n$$

$$S = \{ [C]_\sim : C \in \mathrm{M}(k imes n, \mathbb{F}_q) \}$$

Question and Answer

Thank you so much!