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Group Isomorphism Problem

Problem (Group Iso)
Given the multiplication tables of two groups of finite order N, determine
whether they are isomorphic.

Z2
+ 0 1
0 0 1
1 1 0

∼=

S2
◦ e s
e e s
s s e

First algorithm: Nlog N+O(1) time attributed to Tarjan [Miller’78]
Best known algorithm: N 1

4 log N+O(1) time [Rosenbaum’13]

Open question: Nlog N ?−→ No(log N)
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Group Isomorphism vs. Graph Isomorphism

Similarity
Both are extensively studied since 1970s.
Both are neither known to be in P nor to be NP-complete.
Best algorithms for both problems have a quasi-polynomial running time.

Differences
Group Iso Graph Iso

Natural bound Nlog N+O(1) [Miller’78] N !

Best known bound N 1
4 log N+O(1) [Rosenbaum’13] NO((log N)c) [Babai’17]

Group Iso blocks us from an No(log N) time algorithm for Graph Iso [Babai’17]!
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Through the lens of Group Iso testing

Theoretical computer science: complexity in the worst case

Computational group theory: practical algorithms (as in Magma or GAP)

Cryptography: protocols based on isomorphism problems
Several schemes have been submitted to the NIST call for post-quantum
digital signatures, such as ALTEQ, MEDS, and LESS.

All of these areas can give us good motivation to study Group Iso testing :)
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Recent breakthrough in Group Iso of a special class

Theorem (Sun’23)
Given two p-groups of class 2 and exponent p of order N, there exists an
algorithm in time NÕ((log N)5/6) to decide whether they are isomorphic.

Why this class of groups?
1 The isomorphism testing between p-groups of class 2 and exponent p is a

major bottleneck for Group Iso.

Definition (p-groups of class 2 and exponent p)
For prime p, we say a p-group G is of class-2 and exponent p, if

every g ∈ G satisfies that gp = id, and
[G, [G,G]] only contains the identity element.

2 The isomorphism testing between p-groups of class 2 and exponent p can
reduce to the isomorphism testing between two 3-tensors.
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Tensor Isomorphism Problem

Tensors are multi-way arrays, e.g., 2-tensor A = (ai,j)n is an n×n matrix:

A

Similarly, 3-tensors are arrays with 3 indices, like a cube with matrix slices:

A1

An

More generally, we can define d-tensors, but d-Tensor Iso is as hard as
3-Tensor Iso. [Grochow-Qiao’23]
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Tensor Isomorphism Problem

Isomorphism for 3-tensors under three invertible matrices P, Q, and S:

∼=

span{PA1Q, · · · ,PAnQ} = span{B1, · · · ,Bn}

invertible matrices

P

Q
S
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Tensor Isomorphism Problem

Isomorphism for 3-tensors under three invertible matrices P, Q, and S:

∼= B1

Bn

A1

An
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Tensor Isomorphism Problem
Definition (Linear span of matrices)
Let {Bi : i ∈ [n]} be a set of matrices over Fq. Then

span{Bi : i ∈ [n]} := {
∑n

i=1 ciBi : ci ∈ Fq}.

Problem (Equivalence testing of 3-tensors)
Given two n × n × n tensors over Fq whose frontal slices are {Ai : i ∈ [n]} and
{Bi : i ∈ [n]}, respectively. Determine if they are equivalent, i.e., if there exist
two invertible matrices P and Q such that

span{Bi : i ∈ [n]} = span{PAiQ : i ∈ [n]}.

Problem (Congruence testing of 3-tensors)
Given two n × n × n tensors over Fq whose frontal slices are {Ai : i ∈ [n]} and
{Bi : i ∈ [n]}, respectively. Determine if they are congruent, i.e., if there exist
one invertible matrix T such that

span{Bi : i ∈ [n]} = span{TtAiT : i ∈ [n]}.
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From p-Group Iso to 3-Tensor Iso

p-groups of
class-2 and
exponent p

with order-N

n

n

n

M1

Mn

−Mt
i = Mi

Theorem (Baer’s correspondence)
Two p-groups of class 2 and exponent p are isomorphic if and only if their
associated skew-symmetric 3-tensors over Fp are congruent.
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From p-Group Iso to 3-Tensor Iso

p-groups of
class-2 and
exponent p

with order-N

n

n

n

M1

Mn

−Mt
i = Mi

n = O(logp N)

Theorem (Baer’s correspondence)
Two p-groups of class 2 and exponent p are isomorphic if and only if their
associated skew-symmetric 3-tensors over Fp are congruent.
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From p-Group Iso to 3-Tensor Iso

p-groups of
class-2 and
exponent p

with order-N

n

n

n

M1

Mn

−Mt
i = Mi

n = O(logp N)

N(log N)c
⇐ pn1+c

Theorem (Baer’s correspondence)
Two p-groups of class 2 and exponent p are isomorphic if and only if their
associated skew-symmetric 3-tensors over Fp are congruent.
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From p-Group Iso to 3-Tensor Iso

p-groups of
class-2 and
exponent p

with order-N

n

n

n

M1

Mn

−Mt
i = Mi

n = O(logp N)

N(log N)0.5
⇐ pn1.5

Our result!

Theorem (Baer’s correspondence)
Two p-groups of class 2 and exponent p are isomorphic if and only if their
associated skew-symmetric 3-tensors over Fp are congruent.
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Previous work and our main result

Natural upper bound: qO(n2) (known since at least 1970’s)
Sun’s breakthrough: qO(n1.8·log q) [Sun’23]

Our improvement: qÕ(n1.5) for the equivalence testing of general 3-tensors

B1

Bn

A1

An

span{PA1Q, · · · ,PAnQ} = span{B1, · · · ,Bn}

∼=

invertible matrices
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invertible matrices
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Overall strategy: from Tensor Iso to Tuple Iso

B1

Bn

A1

An

span{PA1Q, · · · ,PAnQ} = span{B1, · · · ,Bn}

∼=

linear
combination

linear
combination

Overall strategy: reduce the equivalence testing of 3-tensors to the congruence
testing of matrix tuples, which is solvable in polynomial time [Ivanyos-Qiao’19].

B′
1

B′
m

A′
1

A′
m

(TtA′
1T, · · · ,TtA′

mT) = (B′
1, · · · ,B′

m)

∼=

NO linear
combination

NO linear
combination
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Bridge: semi-canonical forms of equivalent tensors

O

n × n × n tensor semi-canonical form

P

Q
S

d + f ≪ n

We first make the 3-tensors in a semi-canonical form by applying P, Q and
S, and then construct matrix tuples from the semi-canonical 3-tensors.
The margins are supposed to be small, to reduce the cost of further enu-
meration of the possible action matrices.
The margin for the third direction, while can be large, is ‘fixed’ somehow.
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Bridge: semi-canonical forms of equivalent tensors

n × n × n tensor semi-canonical form

P

Q
S

d + f ≪ n

Two key techniques:
1. Refinement: fix rear slices and leave the frontal to span a low-rank space
2. Low-rank characterization: make a big zero block on the low-rank slices

https://qsi.uts.edu.au/


 

 

Bridge: semi-canonical forms of equivalent tensors

n × n × n tensor semi-canonical form

P

Q
S

d + f ≪ n

Two key techniques:
1. Refinement: fix rear slices and leave the frontal to span a low-rank space∗

2. Low-rank characterization: make a big zero block on the low-rank slices

∗A linear space of matrices is of low rank, if every matrix in it is of low rank.

https://qsi.uts.edu.au/


 

 

Bridge: semi-canonical forms of equivalent tensors

O

n × n × n tensor semi-canonical form

P

Q
S

d + f ≪ n

Two key techniques:
1. Refinement: fix rear slices and leave the frontal to span a low-rank space∗

2. Low-rank characterization: make a big zero block on the low-rank slices

∗A linear space of matrices is of low rank, if every matrix in it is of low rank.

https://qsi.uts.edu.au/


 

 

Bridge: semi-canonical forms of equivalent tensors

O

n × n × n tensor semi-canonical form

P

Q
S

d + f ≪ n

Two key techniques:
1. Refinement: fix rear slices and leave the frontal to span a low-rank space∗

2. Low-rank characterization: make a big zero block on the low-rank slices

∗A linear space of matrices is of low rank, if every matrix in it is of low rank.

https://qsi.uts.edu.au/


 

 

A special case: canonicalization by compression

LA1R

LAnR

A1

An

n × n × n tensor A
s × s × n tensor LAR

Assume we can apply L ∈ GL(s × n,Fq) and R ∈ GL(n × s,Fq) such that
LA1R, · · · , LAnR ∈ M(s × s,Fq) are linearly independent.
Then there is a quick algorithm to test the isomorphism between two 3-
tensors A and B.

Compute the canonical basis of LAR.
Enumerate such matrices L′ and R′ for B, which costs qO(ns).
Compute the canonical basis of L′BR′ and compare it to that of LAR.
The correspondence between L,L′ and R,R′ gives the desired isomorphism.

What if LAR = 0 for some non-zero A ∈ span{Ai : i ∈ [n]}?
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Technique 1: refine the frontal slices

A/KerL,R(A)

Given a 3-tensor A whose frontal slices span A ≤ M(n,Fq).
Basic idea: sort the basis matrices (subject to choices of L, R) such that

the first ones span KerL,R(A) := span{A ∈ A | LAR = 0}, and
the remaining ones form a canonical basis of the quotient space A/KerL,R(A).

Advantage: KerL,R(A) is a low-rank subspace with a high probability.
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Technique 1: refine the frontal slices of a 3-tensor

Advantage: KerL,R(A) is a low-rank subspace with a high probability.

Lemma (Ivanyos-Mendoza-Qiao-Sun-Zhang’24)
Let A ≤ M(n,Fq) be a matrix subspace of dimension n. Then with at least
probability of 1 − 1

qr , KerL,R(A) consists of matrices of rank ≤ r for uniformly
randomly sampled L ∈ M(s × n,Fq) and R ∈ M(n × s,Fq).

Why is this an advantage?
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Let A ≤ M(n,Fq) be a matrix subspace of dimension n. Let r =

√
n and

s = O(
√

n).

Then with at least probability of 1− 1
qr , KerL,R(A) consists of matrices of rank

≤ r for uniformly randomly sampled L ∈ M(s × n,Fq) and R ∈ M(n × s,Fq).

Again, to find L′,R′ such that B is refined correspondingly to A, we still need
to enumerate all L′,R′ in the same size, which costs qO(ns). Why is this an
advantage?
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A trivial case: characterize a low-rank matrix

by left-right actions O

d

f

matrix A of rank-r matrix LAR of rank-r

d + f = O(r)
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Technique 2: characterize a low-rank matrix subspace

by left-right actions
O

d

f

3-tensor bounded by a low rank r

n

n

Equivalent 3-tensor after characterization

d + f = O(r)
over field of order ≥ r + 1

[Flanders’62]

By [Ivanyos-Qiao-Subrahmanyam’18], we can canonicalize the zero block
in this case.
O(r log r) is obtained from our proof of an inequality between the maximal
rank and the non-commutative rank in matrix spaces.
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O

d

f

3-tensor bounded by a low rank r

n

n

Equivalent 3-tensor after characterization

d + f = O(r2)

[Sun’23]

By [Ivanyos-Qiao-Subrahmanyam’18], we can canonicalize the zero block
in this case.
O(r log r) is obtained from our proof of an inequality between the maximal
rank and the non-commutative rank in matrix spaces.
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From semi-canonical 3-tensors to matrix tuples

d

f

O

3-tensor semi-canonical form

n

n

n

d + f = Õ(
√

n)
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From semi-canonical 3-tensors to matrix tuples

OP

Q
S
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From semi-canonical 3-tensors to matrix tuples

OP

Q
S

Upon enumeration which costs qÕ(n1.5),

P =
P1

P3O

P2 Q =
Q1

Q3O

Q2 S =
S1

IO

S2
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From semi-canonical 3-tensors to matrix tuples
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From semi-canonical 3-tensors to matrix tuples

OP

Q
S

No linear combination

No linear
combination

No lin
ear combinatio

n

P

S

P

Q

S
Q
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From semi-canonical 3-tensors to matrix tuples

O

O

O

O

O
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the matrix tuple we construct
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From 3-Tensor Iso to (skew-symmetric) Tuple Iso

∼=P

Q
S∃ invertible

matrices P,Q,S
s.t. two 3-tensors

B1

BO(n)

A1

AO(n)

∃ an invertible matrix T s.t. (TtA1T, · · · ,TtAO(n)T) = (B1, · · · ,BO(n))

∼=

NO linear
combination

NO linear
combination

−Bt
i = Bi

−At
i = Ai

T is conditioned in a special form, but it is still reducible to the general problem.
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Wrap-up of all the results

Theorem (Ivanyos-Qiao’19)
Given two skew-symmetric matrix tuples over Fq, there exists a polynomial-
time algorithm that decides whether they are congruent.

Theorem (Ivanyos-Mendoza-Qiao-Sun-Zhang’24)
Given two n× n× n tensors over Fq, there exists an algorithm in time qÕ(n1.5)

that decides whether they are equivalent.

Theorem (Ivanyos-Mendoza-Qiao-Sun-Zhang’24)
Given two p-groups of Frattini class 2 of order N, there exists an algorithm in
time NÕ((log N)1/2) to decide whether they are isomorphic.
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Further directions

Can we design a similar algorithm for 4-Tensor Iso problem?

Can we design more faster practical algorithms to break isomorphism-
based cryptography protocols?

[Narayanan-Qiao-Tang’24] made a heuristic one running in time qn/2 for
the average case of the equivalence testing of 3-tensors.

Beyond isomorphism testing, 3-tensors themselves are intriguing objects.
If anyone is interested, we can talk offline about two of my previous pa-
pers on the connections between properties of graphs and linear spaces of
matrices [Li-Qiao-Wigderson-Wigderson-Zhang’22&23].
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Question and Answer

Thank you so much!

Please find the paper and slides available on my webpage:

https://www.chuanqizhang.com

https://qsi.uts.edu.au/
https://www.chuanqizhang.com

