Connections between graphs and matrix spaces

Speaker: Chuanqi Zhang

Centre for Quantum Software and Information University of Technology Sydney

Joint work with Yinan Li, Youming Qiao, Avi Wigderson, and Yuval Wigderson

QuSoft Seminar, Jan 2023

\bullet A quick introduction about matrix spaces.

- Starting point: Existence of perfect matchings *⇐⇒* Singularity
- A general framework of such connections.
- Another example: Acyclicity *⇐⇒* Nilpotency
- \bullet More results with implication to quantum information theory.

- \bullet A quick introduction about matrix spaces.
- Starting point: Existence of perfect matchings *⇐⇒* Singularity
- A general framework of such connections.
- Another example: Acyclicity *⇐⇒* Nilpotency
- \bullet More results with implication to quantum information theory.

- \bullet A quick introduction about matrix spaces.
- Starting point: Existence of perfect matchings *⇐⇒* Singularity
- A general framework of such connections.
- Another example: Acyclicity *⇐⇒* Nilpotency
- \bullet More results with implication to quantum information theory.

- \bullet A quick introduction about matrix spaces.
- Starting point: Existence of perfect matchings *⇐⇒* Singularity
- A general framework of such connections.
- Another example: Acyclicity *⇐⇒* Nilpotency
- \bullet More results with implication to quantum information theory.

- \bullet A quick introduction about matrix spaces.
- Starting point: Existence of perfect matchings *⇐⇒* Singularity
- A general framework of such connections.
- Another example: Acyclicity *⇐⇒* Nilpotency
- \bullet More results with implication to quantum information theory.

A matrix space is a linear space spanned by matrices.

- Let $M(n, F)$ denote the linear space of $n \times n$ matrices over a field F . Then a linear subspace $S \leq M(n, F)$ is called a matrix space.
- Specify a basis M_1, \ldots, M_d for *S*.
- *S* is the set of all linear combinations of M_1, \ldots, M_d .
- *S* corresponds to the symbolic matrix $x_1M_1 + \cdots + x_dM_d$, whose entries are linear forms in the variables x_1, \ldots, x_d , e.g.

- A matrix space is a linear space spanned by matrices.
- Let $M(n, F)$ denote the linear space of $n \times n$ matrices over a field F . Then a linear subspace $S \leq M(n, F)$ is called a matrix space.
- Specify a basis M_1, \ldots, M_d for *S*.
- *S* is the set of all linear combinations of M_1, \ldots, M_d .
- *S* corresponds to the symbolic matrix $x_1M_1 + \cdots + x_dM_d$, whose entries are linear forms in the variables x_1, \ldots, x_d , e.g.

- A matrix space is a linear space spanned by matrices.
- Let $M(n, F)$ denote the linear space of $n \times n$ matrices over a field F . Then a linear subspace $S \leq M(n, F)$ is called a matrix space.
- Specify a basis M_1, \ldots, M_d for S .
- *S* is the set of all linear combinations of M_1, \ldots, M_d .
- *S* corresponds to the symbolic matrix $x_1M_1 + \cdots + x_dM_d$, whose entries are linear forms in the variables $x_1, \ldots, x_d, e.g.$

- A matrix space is a linear space spanned by matrices.
- Let $M(n, F)$ denote the linear space of $n \times n$ matrices over a field F . Then a linear subspace $S \leq M(n, F)$ is called a matrix space.
- Specify a basis M_1, \ldots, M_d for S .
- *S* is the set of all linear combinations of M_1, \ldots, M_d .
- *S* corresponds to the symbolic matrix $x_1M_1 + \cdots + x_dM_d$, whose entries are linear forms in the variables $x_1, \ldots, x_d, e.g.$

- A matrix space is a linear space spanned by matrices.
- Let $M(n, F)$ denote the linear space of $n \times n$ matrices over a field F . Then a linear subspace $S \leq M(n, F)$ is called a matrix space.
- Specify a basis M_1, \ldots, M_d for *S*.
- S is the set of all linear combinations of M_1, \ldots, M_d .
- *S* corresponds to the symbolic matrix $x_1M_1 + \cdots + x_dM_d$, whose entries are linear forms in the variables $x_1, \ldots, x_d, e.g.,$

 $x_1\begin{pmatrix}3&2\-1&0\end{pmatrix}+x_2\begin{pmatrix}1&0\2&-1\end{pmatrix}$ 2 *−*2 $\bigg) = \bigg(\begin{matrix} 3x_1 + x_2 & 2x_1 \\ 2x_1 & 2x_2 \end{matrix}$ $2x_2 - x_1 - 2x_2$) *.*

- A matrix space is a linear space spanned by matrices.
- Let $M(n, F)$ denote the linear space of $n \times n$ matrices over a field F . Then a linear subspace $S \leq M(n, F)$ is called a matrix space.
- Specify a basis M_1, \ldots, M_d for S .
- *S* is the set of all linear combinations of M_1, \ldots, M_d .
- *S* corresponds to the symbolic matrix $x_1M_1 + \cdots + x_dM_d$, whose entries are linear forms in the variables x_1, \ldots, x_d , e.g.,

$$
x_1\begin{pmatrix} 3 & 2 \ -1 & 0 \end{pmatrix} + x_2\begin{pmatrix} 1 & 0 \ 2 & -2 \end{pmatrix} = \begin{pmatrix} 3x_1 + x_2 & 2x_1 \ 2x_2 - x_1 & -2x_2 \end{pmatrix}.
$$

- A matrix space is a linear space spanned by matrices.
- Let $M(n, F)$ denote the linear space of $n \times n$ matrices over a field F . Then a linear subspace $S \leq M(n, F)$ is called a matrix space.
- Specify a basis M_1, \ldots, M_d for *S*.
- *S* is the set of all linear combinations of M_1, \ldots, M_d .
- *S* corresponds to the symbolic matrix $x_1M_1 + \cdots + x_dM_d$, whose entries are linear forms in the variables x_1, \ldots, x_d , e.g.,

$$
x_1\begin{pmatrix} 3 & 2 \ -1 & 0 \end{pmatrix} + x_2\begin{pmatrix} 1 & 0 \ 2 & -2 \end{pmatrix} = \begin{pmatrix} 3x_1 + x_2 & 2x_1 \ 2x_2 - x_1 & -2x_2 \end{pmatrix}.
$$

- For $n \in \mathbb{N}$, $[n] := \{1, 2, \ldots, n\}.$
- For $(i, j) \in [n] \times [n]$, let $E_{i,j}$ be the elementary matrix in $M(n, F)$ where the (i, j) th entry is 1, and the remaining entries are 0. For example,

$$
E_{2,3} \in M(3, F) := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}
$$

• For a bipartite graph $G = ([n] \cup [n], E)$ or a directed graph $G = ([n], E)$, the adjacency matrix is

$$
A_G := \sum_{(i,j) \in E} \mathbb{E}_{i,j}.
$$

The graphical matrix space (over F) corresponding to *G* is

 $S_G := \text{span}\{E_{i,j} \mid (i,j) \in E\}.$

- For $n \in \mathbb{N}$, $[n] := \{1, 2, \ldots, n\}.$
- For $(i, j) \in [n] \times [n]$, let $E_{i,j}$ be the elementary matrix in $M(n, F)$ where the (i, j) th entry is 1, and the remaining entries are 0. For example,

$$
E_{2,3} \in M(3, \mathbb{F}) := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.
$$

• For a bipartite graph $G = ([n] \cup [n], E)$ or a directed graph $G = ([n], E)$, the adjacency matrix is

$$
A_G := \sum_{(i,j)\in E} \mathbb{E}_{i,j}.
$$

The graphical matrix space (over F) corresponding to *G* is

$$
S_G := \text{span}\{E_{i,j} \mid (i,j) \in E\}.
$$

- For $n \in \mathbb{N}$, $[n] := \{1, 2, \ldots, n\}.$
- For $(i, j) \in [n] \times [n]$, let $E_{i,j}$ be the elementary matrix in $M(n, F)$ where the (i, j) th entry is 1, and the remaining entries are 0. For example,

$$
E_{2,3} \in M(3, \mathbb{F}) := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.
$$

• For a bipartite graph $G = ([n] \cup [n], E)$ or a directed graph $G = ([n], E)$, the adjacency matrix is

$$
A_G:=\sum_{(i,j)\in E} \mathrm{E}_{i,j}.
$$

The graphical matrix space (over F) corresponding to *G* is

 $S_G := \text{span}\{E_{i,j} \mid (i,j) \in E\}.$

- For $n \in \mathbb{N}$, $[n] := \{1, 2, \ldots, n\}.$
- For $(i, j) \in [n] \times [n]$, let $E_{i,j}$ be the elementary matrix in $M(n, F)$ where the (i, j) th entry is 1, and the remaining entries are 0. For example,

$$
E_{2,3} \in M(3, \mathbb{F}) \coloneqq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.
$$

• For a bipartite graph $G = ([n] \cup [n], E)$ or a directed graph $G = ([n], E)$, the adjacency matrix is

$$
A_G := \sum_{(i,j)\in E} \mathcal{E}_{i,j}.
$$

The graphical matrix space (over F) corresponding to *G* is

$$
S_G := \text{span}\{E_{i,j} \mid (i,j) \in E\}.
$$

- For $n \in \mathbb{N}$, $[n] := \{1, 2, \ldots, n\}.$
- For $(i, j) \in [n] \times [n]$, let $E_{i,j}$ be the elementary matrix in $M(n, F)$ where the (i, j) th entry is 1, and the remaining entries are 0. For example,

$$
E_{2,3} \in M(3, \mathbb{F}) \coloneqq \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.
$$

• For a bipartite graph $G = ([n] \cup [n], E)$ or a directed graph $G = ([n], E)$, the adjacency matrix is

$$
A_G := \sum_{(i,j)\in E} \mathcal{E}_{i,j}.
$$

 \bullet The graphical matrix space (over $\mathbb F)$ corresponding to G is

$$
\mathcal{S}_G := \text{span}\{E_{i,j} \mid (i,j) \in E\}.
$$

Bipartite Graph *G* Graphical Matrix Space \mathcal{S}_G

$$
\begin{pmatrix} 0 & x_1 & 0 \ 0 & 0 & x_2 \ x_3 & 0 & x_4 \end{pmatrix}
$$

G has a perfect matching iff S^G has some invertible matrices.

$$
\begin{pmatrix} 0 & c_1 & 0 \ 0 & 0 & c_2 \ c_3 & 0 & 0 \end{pmatrix}
$$

Bipartite Graph *G* Graphical Matrix Space S_G

$$
\begin{pmatrix} 0 & x_{1,2} & 0 \ 0 & 0 & x_{2,3} \ x_{3,1} & 0 & x_{3,3} \end{pmatrix}
$$

Theorem (Tutte'1947, Edmonds'1967, Lovász'1979)

G has a perfect matching iff S^G has some invertible matrices.

Proof sketch.

(*⇒*) Take the matrix supporting on a perfect matching. This would yield an invertible matrix.

(*⇐*) Take the symbolic matrix of S_G . Existing invertible matrices implies the determinant polynomial \sum_{σ} sgn(σ) $\prod_{i=1}^{n} x_{i,\sigma_i} \not\equiv 0$ and thereby $\prod_{i=1}^{n} x_{i,\sigma_i} \not\equiv 0$ for some σ . Then the edge set $\{(i, \sigma_i) : i \in [n]\}$ gives a perfect matching.

Fact (about perfect matching)

If a bipartite graph $G = ([n] \times [n], E)$ *doesn't contain any perfect matching, then* $|E| \leq n(n-1)$ *.*

If $S \leq M(n, F)$ *doesn't contain any invertible matrix, how large can S be?*

 \bullet dim(*S*) = *n*(*n* − 1) is possible by this example,

 $\sqrt{ }$ $\overline{}$ $x_{1,1}$ $x_{1,2}$ \ldots $x_{1,n}$ *xⁿ−*1*,*¹ *xⁿ−*1*,*² *. . . xⁿ−*1*,ⁿ* 0 0 *. . .* 0 \setminus $\begin{array}{c} \hline \end{array}$

Fact (about perfect matching)

If a bipartite graph $G = ([n] \times [n], E)$ *doesn't contain any perfect matching, then* $|E| \leq n(n-1)$ *.*

Problem

If $S \leq M(n, F)$ *doesn't contain any invertible matrix, how large can S be?*

 \bullet dim(*S*) = *n*(*n* − 1) is possible by this example,

 $\sqrt{ }$ $\overline{}$ $x_{1,1}$ $x_{1,2}$ \ldots $x_{1,n}$ *xⁿ−*1*,*¹ *xⁿ−*1*,*² *. . . xⁿ−*1*,ⁿ* 0 0 *. . .* 0 \setminus $\begin{array}{c} \hline \end{array}$

Fact (about perfect matching)

If a bipartite graph $G = ([n] \times [n], E)$ *doesn't contain any perfect matching, then* $|E| \leq n(n-1)$ *.*

Problem

If $S \leq M(n, F)$ *doesn't contain any invertible matrix, how large can S be?*

 \bullet dim(*S*) = *n*(*n* − 1) is possible by this example,

$$
\begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n-1,1} & x_{n-1,2} & \dots & x_{n-1,n} \\ 0 & 0 & \dots & 0 \end{pmatrix}
$$

Fact (about perfect matching)

If a bipartite graph $G = ([n] \times [n], E)$ *doesn't contain any perfect matching, then* $|E| \leq n(n-1)$ *.*

Problem

If $S \leq M(n, F)$ *doesn't contain any invertible matrix, how large can S be?*

• $\dim(\mathcal{S}) = n(n-1)$ is possible by this example,

$$
\begin{pmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n-1,1} & x_{n-1,2} & \dots & x_{n-1,n} \\ 0 & 0 & \dots & 0 \end{pmatrix}
$$

Theorem (Dieudonné'1948, Flanders'1962, Meshulam'1985)

- *G* has no perfect matching \iff S_G has no invertible matrix
- We call it a basic correspondence between *G* and *S_G*.
ax. size of such $G \subseteq K_{n,n}$ = Max. dim of such • Max. size of such $G \subseteq K_{n,n}$ =
- Max. size of such $G \subseteq H$ Max. dim of such $S \leq S_H$

- This theorem generalizes Dieudonné's theorem.
- A combinatorial "explanation" of an algebraic property!
- We call it an inherited correspondence.

- *G* has no perfect matching \iff S_G has no invertible matrix • We call it a basic correspondence between *G* and *S_G*.
ax. size of such $G \subseteq K_{n,n}$ = Max. dim of such
- Max. size of such $G \subseteq K_{n,n}$ =
- Max. size of such $G \subseteq H$ Max. dim of such $S \leq S_H$

- This theorem generalizes Dieudonné's theorem.
- A combinatorial "explanation" of an algebraic property!
- We call it an inherited correspondence.

- *G* has no perfect matching \iff S_G has no invertible matrix \bullet We call it a basic correspondence between *G* and S_G .
- Max. size of such $G \subseteq K_{n,n}$ = Max. dim of such $S \leq M(n, F)$ \bullet Note that *S* doesn't have to be graphical.
- Max. size of such $G \subseteq H$ Max. dim of such $S \leq S_H$

- This theorem generalizes Dieudonné's theorem.
- A combinatorial "explanation" of an algebraic property!
- We call it an inherited correspondence.

- *G* has no perfect matching \iff S_G has no invertible matrix \bullet We call it a basic correspondence between *G* and S_G .
- Max. size of such $G \subseteq K_{n,n}$ = Max. dim of such $S \leq M(n, F)$ \bullet Note that S doesn't have to be graphical.
- \bullet Max. size of such *G* ⊆ *H* Max. dim of such $S \leq S_H$

- This theorem generalizes Dieudonné's theorem.
- A combinatorial "explanation" of an algebraic property!
- We call it an inherited correspondence.

- *G* has no perfect matching \iff S_G has no invertible matrix \bullet We call it a basic correspondence between *G* and S_G .
- Max. size of such $G \subseteq K_{n,n}$ = Max. dim of such $S \leq M(n, F)$ \bullet Note that S doesn't have to be graphical.
- \bullet Max. size of such *G* ⊆ *H* Max. dim of such $S \leq S_H$

- This theorem generalizes Dieudonné's theorem.
- A combinatorial "explanation" of an algebraic property!
- We call it an inherited correspondence.

- *G* has no perfect matching \iff S_G has no invertible matrix \bullet We call it a basic correspondence between *G* and S_G .
- Max. size of such $G \subseteq K_{n,n}$ = Max. dim of such $S \leq S_{K_{n,n}}$ \bullet Note that S doesn't have to be graphical.
- Max. size of such $G \subseteq H$ Max. dim of such $S \leq S_H$

- This theorem generalizes Dieudonné's theorem.
- A combinatorial "explanation" of an algebraic property!
- We call it an inherited correspondence.

- *G* has no perfect matching *⇐⇒ S^G* has no invertible matrix
- We call it a basic correspondence between *G* and S_G .
• Max. size of such $G \subseteq K_{n,n}$ = Max. dim $=$ Max. dim of such *S* ≤ *S*_{*K*^{*n*},*n*} • Note that *S* doesn't have to be graphical.
ax. size of such $G \subseteq H$ $\stackrel{?}{=}$
- Max. size of such $G \subseteq H$ Max. dim of such $S \leq S_H$

- This theorem generalizes Dieudonné's theorem.
- A combinatorial "explanation" of an algebraic property!
- We call it an inherited correspondence.

- *G* has no perfect matching \iff S_G has no invertible matrix \bullet We call it a basic correspondence between *G* and S_G .
- Max. size of such $G \subseteq K_{n,n}$ = Max. dim of such $S \leq S_{K_{n,n}}$ \bullet Note that S doesn't have to be graphical.
- Max. size of such $G \subseteq H$ = Max. dim of such $S \leq S_H$

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

- This theorem generalizes Dieudonné's theorem.
- A combinatorial "explanation" of an algebraic property!
- We call it an inherited correspondence.

- *G* has no perfect matching \iff S_G has no invertible matrix \bullet We call it a basic correspondence between *G* and S_G .
- Max. size of such $G \subseteq K_{n,n}$ = Max. dim of such $S \leq S_{K_{n,n}}$ \bullet Note that S doesn't have to be graphical.
- Max. size of such $G \subseteq H$ = Max. dim of such $S \leq S_H$

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

- This theorem generalizes Dieudonné's theorem.
- A combinatorial "explanation" of an algebraic property!
- We call it an inherited correspondence.

- *G* has no perfect matching \iff S_G has no invertible matrix \bullet We call it a basic correspondence between *G* and S_G .
- Max. size of such $G \subseteq K_{n,n}$ = Max. dim of such $S \leq S_{K_{n,n}}$ \bullet Note that $\mathcal S$ doesn't have to be graphical.
- Max. size of such $G \subseteq H$ = Max. dim of such $S \leq S_H$

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

- This theorem generalizes Dieudonné's theorem.
- A combinatorial "explanation" of an algebraic property!
- We call it an inherited correspondence.
Correspondences between matrix spaces and graphs

- *G* has no perfect matching \iff S_G has no invertible matrix \bullet We call it a basic correspondence between *G* and S_G .
- Max. size of such $G \subseteq K_{n,n}$ = Max. dim of such $S \leq S_{K_{n,n}}$ \bullet Note that $\mathcal S$ doesn't have to be graphical.
- Max. size of such $G \subseteq H$ = Max. dim of such $S \leq S_H$

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

For any bipartite graph H, the maximum size over all $G \subseteq H$ *with no perfect matching* = the maximum dim over all $S \leq S_H$ with no invertible matrix.

- This theorem generalizes Dieudonné's theorem.
- A combinatorial "explanation" of an algebraic property!
- We call it an inherited correspondence.

A basic correspondence is a result of the form: for any graph *G*,

 G satisfies $P \iff S_G$ satisfies Q

for a graph-theoretic property *P* and a linear-algebraic property *Q*.

An inherited correspondence generalizes this to: for any graph *H*,

Max. size of $G \subseteq H$ satisfying $P = \text{Max.}$ dim of $S \leq S_H$ satisfying Q

- The basic correspondence immediately implies the *≤* result.
- *G* has no matching of size $r \iff$ Every matrix in S_G has rank $\lt r$

For any bipartite graph H, the max. size over all $G \subseteq H =$ *the max. dim over* $all S \leq S_H$.

A basic correspondence is a result of the form: for any graph *G*,

 G satisfies $P \iff S_G$ satisfies Q

for a graph-theoretic property *P* and a linear-algebraic property *Q*.

An inherited correspondence generalizes this to: for any graph *H*,

Max. size of $G \subseteq H$ satisfying $P = \text{Max. }$ dim of $S \leq S_H$ satisfying Q

- The basic correspondence immediately implies the \leq result. \bullet
- *G* has no matching of size $r \iff$ Every matrix in S_G has rank $\lt r$

For any bipartite graph H, the max. size over all $G \subseteq H =$ *the max. dim over* $all S \leq S_H$.

A basic correspondence is a result of the form: for any graph *G*,

 G satisfies $P \iff S_G$ satisfies Q

for a graph-theoretic property *P* and a linear-algebraic property *Q*.

An inherited correspondence generalizes this to: for any graph *H*,

Max. size of $G \subseteq H$ satisfying $P = \text{Max. }$ dim of $S \leq S_H$ satisfying Q

- The basic correspondence immediately implies the *≤* result.
- **•** *G* has no matching of size *r* \iff Every matrix in S_G has rank $\lt r$

For any bipartite graph H, the max. size over all $G \subseteq H =$ *the max. dim over* $all S \leq S_H$.

A basic correspondence is a result of the form: for any graph *G*,

 G satisfies $P \iff S_G$ satisfies Q

for a graph-theoretic property *P* and a linear-algebraic property *Q*.

An inherited correspondence generalizes this to: for any graph *H*,

Max. size of $G \subseteq H$ satisfying $P = \text{Max. dim of } S \leq S_H$ satisfying Q

————————————————————————————————–

- The basic correspondence immediately implies the *≤* result.
- *G* has no matching of size $r \iff$ Every matrix in S_G has rank $\lt r$

For any bipartite graph H, the max. size over all $G \subseteq H =$ *the max. dim over* $all S \leq S_H$.

A basic correspondence is a result of the form: for any graph *G*,

 G satisfies $P \iff S_G$ satisfies Q

for a graph-theoretic property *P* and a linear-algebraic property *Q*.

An inherited correspondence generalizes this to: for any graph *H*,

Max. size of $G \subseteq H$ satisfying $P = \text{Max. dim of } S \leq S_H$ satisfying Q

————————————————————————————————–

- The basic correspondence immediately implies the *≤* result.
- *G* has no matching of size $r \iff$ Every matrix in S_G has rank $\lt r$

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

For any bipartite graph H, the max. size over all $G \subseteq H$ with no matching of *size* $r =$ *the max. dim over all* $S \leq S_H$ *in which every matrix has rank* $\lt r$ *.*

A basic correspondence is a result of the form: for any graph *G*,

 G satisfies $P \iff S_G$ satisfies Q

for a graph-theoretic property *P* and a linear-algebraic property *Q*.

An inherited correspondence generalizes this to: for any graph *H*,

Max. size of $G \subseteq H$ satisfying $P = \text{Max. dim of } S \leq S_H$ satisfying Q

————————————————————————————————–

- The basic correspondence immediately implies the *≤* result.
- *G* has no matching of size $r \iff$ Every matrix in S_G has rank $\lt r$

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

For any bipartite graph H, the max. size over all $G \subseteq H$ *with no matching of size* $r =$ *the max.* dim over all $S \leq S_H$ *in which every matrix has rank* $\lt r$ *.*

A basic correspondence is a result of the form: for any graph *G*,

 G satisfies $P \iff S_G$ satisfies Q

for a graph-theoretic property *P* and a linear-algebraic property *Q*.

An inherited correspondence generalizes this to: for any graph *H*,

Max. size of $G \subseteq H$ satisfying $P = \text{Max. dim of } S \leq S_H$ satisfying Q

————————————————————————————————–

- The basic correspondence immediately implies the *≤* result.
- *G* has no matching of size $r \iff$ Every matrix in S_G has rank $\lt r$

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

For any bipartite graph H, the max. size over all $G \subseteq H$ with no matching of *size* $r =$ *the max. dim over all* $S \leq S_H$ *in which every matrix has rank* $\lt r$ *.*

A basic correspondence is a result of the form: for any graph *G*,

 G satisfies $P \iff S_G$ satisfies Q

for a graph-theoretic property *P* and a linear-algebraic property *Q*.

An inherited correspondence generalizes this to: for any graph *H*,

Max. size of $G \subseteq H$ satisfying $P = \text{Max. dim of } S \leq S_H$ satisfying Q

————————————————————————————————–

- The basic correspondence immediately implies the *≤* result.
- *G* has no matching of size $r \iff$ Every matrix in S_G has rank $\lt r$

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

For any bipartite graph H, the max. size over all $G \subseteq H$ with no matching of *size* $r =$ *the max. dim over all* $S \leq S_H$ *in which every matrix has rank* $\lt r$ *.*

- A graph is acyclic if it has no cycles.
- A matrix *B* is nilpotent, if $B^k = 0$ for some $k \in \mathbb{N}$.
- A directed graph *G* is acyclic iff its adjacency matrix A_G is nilpotent.
- Note that this doesn't hold over the field of order 2. For example,

$$
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

- **•** A matrix space *S* ≤ M(*n*, **F**) is nil, if any *B* ∈ *S* is nilpotent.
- Another basic correspondence: a directed graph *G* is acyclic iff its graphical matrix space S_G is nil.
- This holds over any field.

A graph is acyclic if it has no cycles.

- A matrix *B* is nilpotent, if $B^k = 0$ for some $k \in \mathbb{N}$.
- A directed graph G is acyclic iff its adjacency matrix A_G is nilpotent.
- Note that this doesn't hold over the field of order 2. For example,

$$
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

- **•** A matrix space *S* ≤ M(*n*, **F**) is nil, if any *B* ∈ *S* is nilpotent.
- Another basic correspondence: a directed graph *G* is acyclic iff its graphical matrix space S_G is nil.
- This holds over any field.

- A graph is acyclic if it has no cycles.
- A matrix *B* is nilpotent, if $B^k = 0$ for some $k \in \mathbb{N}$.
- A directed graph G is acyclic iff its adjacency matrix A_G is nilpotent.
- Note that this doesn't hold over the field of order 2. For example,

$$
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

- A matrix space $S \leq M(n, F)$ is nil, if any $B \in S$ is nilpotent.
- Another basic correspondence: a directed graph *G* is acyclic iff its graphical matrix space S_G is nil.
- This holds over any field.

- \bullet A graph is acyclic if it has no cycles.
- A matrix *B* is nilpotent, if $B^k = 0$ for some $k \in \mathbb{N}$.
- A directed graph G is acyclic iff its adjacency matrix A_G is nilpotent.
- Note that this doesn't hold over the field of order 2. For example,

$$
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

- **•** A matrix space *S* ≤ M(*n*, **F**) is nil, if any *B* ∈ *S* is nilpotent.
- Another basic correspondence: a directed graph *G* is acyclic iff its graphical matrix space S_G is nil.
- This holds over any field.

- A graph is acyclic if it has no cycles.
- A matrix *B* is nilpotent, if $B^k = 0$ for some $k \in \mathbb{N}$.
- A directed graph G is acyclic iff its adjacency matrix A_G is nilpotent.
- Note that this doesn't hold over the field of order 2. For example,

$$
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

- A matrix space $S \leq M(n, F)$ is nil, if any $B \in S$ is nilpotent.
- Another basic correspondence: a directed graph *G* is acyclic iff its graphical matrix space S_G is nil.
- This holds over any field.

- A graph is acyclic if it has no cycles.
- A matrix *B* is nilpotent, if $B^k = 0$ for some $k \in \mathbb{N}$.
- A directed graph G is acyclic iff its adjacency matrix A_G is nilpotent.
- Note that this doesn't hold over the field of order 2. For example,

$$
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

- A matrix space $S \leq M(n, F)$ is nil, if any $B \in S$ is nilpotent.
- Another basic correspondence: a directed graph *G* is acyclic iff its graphical matrix space S_G is nil.
- This holds over any field.

- A graph is acyclic if it has no cycles.
- A matrix *B* is nilpotent, if $B^k = 0$ for some $k \in \mathbb{N}$.
- A directed graph G is acyclic iff its adjacency matrix A_G is nilpotent.
- Note that this doesn't hold over the field of order 2. For example,

$$
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

- A matrix space $S \leq M(n, F)$ is nil, if any $B \in S$ is nilpotent.
- \bullet Another basic correspondence: a directed graph G is acyclic iff its graphical matrix space S_G is nil.
- This holds over any field.

- A graph is acyclic if it has no cycles.
- A matrix *B* is nilpotent, if $B^k = 0$ for some $k \in \mathbb{N}$.
- A directed graph G is acyclic iff its adjacency matrix A_G is nilpotent.
- Note that this doesn't hold over the field of order 2. For example,

$$
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}
$$

- A matrix space $S \leq M(n, F)$ is nil, if any $B \in S$ is nilpotent.
- \bullet Another basic correspondence: a directed graph G is acyclic iff its graphical matrix space S_G is nil.
- \bullet This holds over any field.

Fact (about directed acyclic graph)

If a directed graph $G = ([n], E)$ *doesn't contain any cycles, then* $|E| \leq {n \choose 2}$ *.*

If $S \leq M(n, F)$ *is nil, how large can S be?*

 $\dim(\mathcal{S}) = \binom{n}{2}$ is possible by this example:

 $If S \leq M(n, \mathbb{F})$ *is nil, then* dim $S \leq {n \choose 2}$ *.*

Fact (about directed acyclic graph)

If a directed graph $G = ([n], E)$ *doesn't contain any cycles, then* $|E| \leq {n \choose 2}$ *.*

Problem

```
If S \leq M(n, F) is nil, how large can S be?
```

```
\dim(\mathcal{S}) = \binom{n}{2} is possible by this example:
```


 $If S \leq M(n, \mathbb{F})$ *is nil, then* dim $S \leq {n \choose 2}$ *.*

Fact (about directed acyclic graph)

If a directed graph $G = ([n], E)$ *doesn't contain any cycles, then* $|E| \leq {n \choose 2}$ *.*

Problem

.

If $S \leq M(n, F)$ *is nil, how large can S be?*

 $\dim(\mathcal{S}) = \binom{n}{2}$ is possible by this example:

If $S \leq M(n, \mathbb{F})$ *is nil, then* dim $S \leq {n \choose 2}$

Fact (about directed acyclic graph)

If a directed graph $G = ([n], E)$ *doesn't contain any cycles, then* $|E| \leq {n \choose 2}$ *.*

Problem

.

If $S \leq M(n, F)$ *is nil, how large can S be?*

 $\dim(\mathcal{S}) = \binom{n}{2}$ is possible by this example:

Theorem (Gerstenhaber'1958, Serežkin'1985)

If $S \leq M(n, F)$ *is nil, then* dim $S \leq {n \choose 2}$ *.*

\mathcal{G} is acyclic \Leftrightarrow \mathcal{S}_G is nil

An inherited correspondence: for any directed graph *H*,

Max. size of $G \subseteq H$ being acyclic Max. dim of $S \leq S_H$ being nil

- This generalizes Gerstenhaber's theorem.
- We adapt de Seguins Pazzis's proof [dSP13] of Gerstenhaber's theorem to prove the \geq direction.
- Corollary: Given $S \leq M(n, F)$, it is NP-hard to determine the maximum dimension of nil subspace of *S*.

A basic correspondence: for any directed graph *G*,

 \mathcal{G} is acyclic \Leftrightarrow $\mathcal{S}_\mathcal{G}$ is nil

An inherited correspondence: for any directed graph *H*,

Max. size of $G \subseteq H$ being acyclic $\stackrel{?}{=}$ Max. dim of $S \leq S_H$ being nil

- This generalizes Gerstenhaber's theorem.
- We adapt de Seguins Pazzis's proof [dSP13] of Gerstenhaber's theorem to prove the \geq direction.
- Corollary: Given $S \leq M(n, F)$, it is NP-hard to determine the maximum dimension of nil subspace of *S*.

A basic correspondence: for any directed graph *G*,

 \mathcal{G} is acyclic \Leftrightarrow \mathcal{S}_G is nil

An inherited correspondence: for any directed graph *H*,

Max. size of $G \subseteq H$ being acyclic = Max. dim of $S \leq S_H$ being nil

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

- This generalizes Gerstenhaber's theorem.
- We adapt de Seguins Pazzis's proof [dSP13] of Gerstenhaber's theorem to prove the \geq direction.
- Corollary: Given $S \leq M(n, F)$, it is NP-hard to determine the maximum dimension of nil subspace of *S*.

A basic correspondence: for any directed graph *G*,

 \mathcal{G} is acyclic \Leftrightarrow \mathcal{S}_G is nil

An inherited correspondence: for any directed graph *H*,

Max. size of $G \subseteq H$ being acyclic = Max. dim of $S \leq S_H$ being nil

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

- This generalizes Gerstenhaber's theorem.
- We adapt de Seguins Pazzis's proof [dSP13] of Gerstenhaber's theorem to prove the \geq direction.
- Corollary: Given $S \leq M(n, F)$, it is NP-hard to determine the maximum dimension of nil subspace of *S*.

A basic correspondence: for any directed graph *G*,

 \mathcal{G} is acyclic \Leftrightarrow \mathcal{S}_G is nil

An inherited correspondence: for any directed graph *H*,

Max. size of $G \subseteq H$ being acyclic = Max. dim of $S \leq S_H$ being nil

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

- This generalizes Gerstenhaber's theorem.
- We adapt de Seguins Pazzis's proof [dSP13] of Gerstenhaber's theorem to prove the \geq direction.
- Corollary: Given $S \leq M(n, F)$, it is NP-hard to determine the maximum dimension of nil subspace of *S*.

A basic correspondence: for any directed graph *G*,

 \mathcal{G} is acyclic \Leftrightarrow \mathcal{S}_G is nil

An inherited correspondence: for any directed graph *H*,

Max. size of $G \subseteq H$ being acyclic = Max. dim of $S \leq S_H$ being nil

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

- This generalizes Gerstenhaber's theorem.
- We adapt de Seguins Pazzis's proof [dSP13] of Gerstenhaber's theorem to prove the \geq direction.
- Corollary: Given $S \leq M(n, F)$, it is NP-hard to determine the maximum dimension of nil subspace of *S*.

 $\boxed{}$

Basic correspondence: for any bipartite/directed graph *G*,

- We also have other results: strong-connectivity and irreducibility, isomorphism and conjugacy/congruence...
- \bullet Such connections are not only found for matrix spaces!

Basic correspondence: for any bipartite/directed graph *G*,

 G satisfies $P \iff S_G$ satisfies Q

for a graph-theoretic property *P* and a linear-algebraic property *Q*.

Inherited correspondence: for any bipartite/directed graph *H*,

- We also have other results: strong-connectivity and irreducibility, isomorphism and conjugacy/congruence...
- Such connections are not only found for matrix spaces!

Basic correspondence: for any bipartite/directed graph *G*,

 G satisfies $P \iff S_G$ satisfies Q

for a graph-theoretic property *P* and a linear-algebraic property *Q*.

Inherited correspondence: for any bipartite/directed graph *H*,

- We also have other results: strong-connectivity and irreducibility, isomorphism and conjugacy/congruence...
- Such connections are not only found for matrix spaces!

Basic correspondence: for any bipartite/directed graph *G*,

for a graph-theoretic property *P* and a linear-algebraic property *Q*.

Inherited correspondence: for any bipartite/directed graph *H*,

- We also have other results: strong-connectivity and irreducibility, isomorphism and conjugacy/congruence...
- \bullet Such connections are not only found for matrix spaces!

- Embed a *d*-regular graph *G* to a quantum channel $\Phi_G : M(n, \mathbb{C}) \to M(n, \mathbb{C})$ [Bannink–Brïet–Labib–Maassen'2020].
- For every $X \in M(n, \mathbb{C})$, the graphical quantum channel of *G* is defined as

$$
\Phi_G(X) := \frac{1}{d} \sum_{(i,j) \in E} \mathcal{E}_{i,j} X \mathcal{E}_{i,j}^*.
$$

For any d-regular graph G, the spectral expansion of G equals the spectral expansion of Φ *G.*

 \bullet Φ is irreducibly covariant, if there exists a compact group Γ and a continuous irreducible unitary representation $U: \Gamma \to U(n)$ such that for any $g \in \Gamma$ and $X \in M(n, \mathbb{C})$, we have $\Phi(U(g)XU(g)^*) = U(g)\Phi(X)U(g)^*$.

- **•** Embed a *d*-regular graph *G* to a quantum channel $\Phi_G : M(n, \mathbb{C}) \to M(n, \mathbb{C})$ [Bannink–Brïet–Labib–Maassen'2020].
- For every $X \in M(n, \mathbb{C})$, the graphical quantum channel of G is defined as

$$
\Phi_G(X) := \frac{1}{d} \sum_{(i,j) \in E} \mathcal{E}_{i,j} X \mathcal{E}_{i,j}^*.
$$

For any d-regular graph G, the spectral expansion of G equals the spectral expansion of Φ *G.*

 \bullet Φ is irreducibly covariant, if there exists a compact group Γ and a continuous irreducible unitary representation $U: \Gamma \to U(n)$ such that for any $g \in \Gamma$ and $X \in M(n, \mathbb{C})$, we have $\Phi(U(g)XU(g)^*) = U(g)\Phi(X)U(g)^*$.

- **•** Embed a *d*-regular graph *G* to a quantum channel $\Phi_G : M(n, \mathbb{C}) \to M(n, \mathbb{C})$ [Bannink–Brïet–Labib–Maassen'2020].
- For every $X \in M(n, \mathbb{C})$, the graphical quantum channel of *G* is defined as

$$
\Phi_G(X) := \frac{1}{d} \sum_{(i,j) \in E} \mathcal{E}_{i,j} X \mathcal{E}_{i,j}^*.
$$

For any d-regular graph G, the spectral expansion of G equals the spectral expansion of Φ *G.*

 \bullet Φ is irreducibly covariant, if there exists a compact group Γ and a continuous irreducible unitary representation $U: \Gamma \to U(n)$ such that for any $g \in \Gamma$ and $X \in M(n, \mathbb{C})$, we have $\Phi(U(g)XU(g)^*) = U(g)\Phi(X)U(g)^*$.

- **•** Embed a *d*-regular graph *G* to a quantum channel $\Phi_G : M(n, \mathbb{C}) \to M(n, \mathbb{C})$ [Bannink–Brïet–Labib–Maassen'2020].
- For every $X \in M(n, \mathbb{C})$, the graphical quantum channel of *G* is defined as

$$
\Phi_G(X) := \frac{1}{d} \sum_{(i,j) \in E} \mathcal{E}_{i,j} X \mathcal{E}_{i,j}^*.
$$

Theorem (Bannink–Brïet–Labib–Maassen'2020, Proposition 3.7)

For any d-regular graph G, the spectral expansion of G equals the spectral expansion of Φ_G *.*

 \bullet Φ is irreducibly covariant, if there exists a compact group Γ and a continuous irreducible unitary representation $U: \Gamma \to U(n)$ such that for any $g \in \Gamma$ and $X \in M(n, \mathbb{C})$, we have $\Phi(U(g)XU(g)^*) = U(g)\Phi(X)U(g)^*$.

- \bullet Embed a *d*-regular graph *G* to a quantum channel $\Phi_G : M(n, \mathbb{C}) \to M(n, \mathbb{C})$ [Bannink–Brïet–Labib–Maassen'2020].
- For every $X \in M(n, \mathbb{C})$, the graphical quantum channel of *G* is defined as

$$
\Phi_G(X) := \frac{1}{d} \sum_{(i,j) \in E} \mathcal{E}_{i,j} X \mathcal{E}_{i,j}^*.
$$

Theorem (Bannink–Brïet–Labib–Maassen'2020, Proposition 3.7)

For any d-regular graph G, the spectral expansion of G equals the spectral expansion of Φ_G *.*

 \bullet Φ is irreducibly covariant, if there exists a compact group Γ and a continuous irreducible unitary representation $U: \Gamma \to U(n)$ such that for any $g \in \Gamma$ and $X \in M(n, \mathbb{C})$, we have $\Phi(U(g)XU(g)^*) = U(g)\Phi(X)U(g)^*$.
Previous works on graphical quantum channels

- Embed a *d*-regular graph *G* to a quantum channel $\Phi_G : M(n, \mathbb{C}) \to M(n, \mathbb{C})$ [Bannink–Brïet–Labib–Maassen'2020].
- For every $X \in M(n, \mathbb{C})$, the graphical quantum channel of *G* is defined as

$$
\Phi_G(X) := \frac{1}{d} \sum_{(i,j) \in E} \mathcal{E}_{i,j} X \mathcal{E}_{i,j}^*.
$$

Theorem (Bannink–Brïet–Labib–Maassen'2020, Proposition 3.7)

For any d-regular graph G, the spectral expansion of G equals the spectral expansion of Φ_G *.*

 \bullet Φ is irreducibly covariant, if there exists a compact group Γ and a continuous irreducible unitary representation $U: \Gamma \to U(n)$ such that for any $g \in \Gamma$ and $X \in M(n, \mathbb{C})$, we have $\Phi(U(g)XU(g)^*) = U(g)\Phi(X)U(g)^*$.

Theorem (Bannink–Brïet–Labib–Maassen'2020, Proposition 3.8)

A d-regular graph *G* is vertex-transitive iff Φ_G is irreducibly covariant.

Vertex-transitivity

- \bullet Let *G* be a directed graph. Let $\text{Aut}(G)$ be the automorphism group of *G*.
- Recall that *G* is vertex-transitive, if $Aut(G)$ is a transitive group.

Vertex-transitivity

- \bullet Let *G* be a directed graph. Let $\text{Aut}(G)$ be the automorphism group of *G*.
- Recall that *G* is vertex-transitive, if $Aut(G)$ is a transitive group.

Vertex-transitivity

- \bullet Let *G* be a directed graph. Let $\text{Aut}(G)$ be the automorphism group of *G*.
- Recall that *G* is vertex-transitive, if $\text{Aut}(G)$ is a transitive group.

Let matrix group $\mathcal{G} \leq \mathrm{GL}(n, \mathbb{F})$ and $U \leq \mathbb{F}^n$.

- \circ $\mathcal G$ is reducible if there exists a non-zero and proper *U* such that for any $A \in \mathcal{G}$, $A(U) \leq U$. Otherwise, we call \mathcal{G} irreducible.
- In this case, *U* is called an invariant subspace.
- Let matrix space $S \leq M(n, F)$.
- Define Conj $(S) := \{ T \in GL(n, \mathbb{F}) \mid TS T^{-1} = S \} \le GL(n, \mathbb{F})$. We say that *S* is conjugacy irreducible, if $Conj(S)$ is irreducible as a matrix group.
- Define $\text{Cong}(\mathcal{S}) := \{ T \in GL(n, \mathbb{F}) \mid TST^t = \mathcal{S} \} \le GL(n, \mathbb{F})$. We say that *S* is congruence irreducible, if $\text{Cong}(\mathcal{S})$ is irreducible as a matrix group.

- Let matrix group $\mathcal{G} \leq \mathrm{GL}(n, \mathbb{F})$ and $U \leq \mathbb{F}^n$.
- \circ G is reducible if there exists a non-zero and proper *U* such that for any $A \in \mathcal{G}$, $A(U) \leq U$. Otherwise, we call \mathcal{G} irreducible.
- \bullet In this case, U is called an invariant subspace.
- Let matrix space $S \leq M(n, F)$.
- Define Conj $(S) := \{ T \in GL(n, \mathbb{F}) \mid TS T^{-1} = S \} \le GL(n, \mathbb{F})$. We say that *S* is conjugacy irreducible, if $Conj(S)$ is irreducible as a matrix group.
- Define $\text{Cong}(\mathcal{S}) := \{ T \in GL(n, \mathbb{F}) \mid TST^t = \mathcal{S} \} \le GL(n, \mathbb{F})$. We say that *S* is congruence irreducible, if $\text{Cong}(\mathcal{S})$ is irreducible as a matrix group.

- Let matrix group $\mathcal{G} \leq \mathrm{GL}(n, \mathbb{F})$ and $U \leq \mathbb{F}^n$.
- \circ G is reducible if there exists a non-zero and proper *U* such that for any $A \in \mathcal{G}$, $A(U) \leq U$. Otherwise, we call \mathcal{G} irreducible.
- \bullet In this case, U is called an invariant subspace.
- Let matrix space $S \leq M(n, F)$.
- Define Conj $(S) := \{ T \in GL(n, \mathbb{F}) \mid TS T^{-1} = S \} \le GL(n, \mathbb{F})$. We say that *S* is conjugacy irreducible, if $Conj(S)$ is irreducible as a matrix group.
- Define $\text{Cong}(\mathcal{S}) := \{ T \in GL(n, \mathbb{F}) \mid TST^t = \mathcal{S} \} \le GL(n, \mathbb{F})$. We say that *S* is congruence irreducible, if $\text{Cong}(\mathcal{S})$ is irreducible as a matrix group.

- Let matrix group $\mathcal{G} \leq \mathrm{GL}(n, \mathbb{F})$ and $U \leq \mathbb{F}^n$.
- \circ G is reducible if there exists a non-zero and proper *U* such that for any $A \in \mathcal{G}$, $A(U) \leq U$. Otherwise, we call \mathcal{G} irreducible.
- \bullet In this case, U is called an invariant subspace.
- Let matrix space $S \leq M(n, F)$.
- Define Conj $(S) := \{ T \in GL(n, \mathbb{F}) \mid TS T^{-1} = S \} \le GL(n, \mathbb{F})$. We say that *S* is conjugacy irreducible, if $Conj(S)$ is irreducible as a matrix group.
- Define $\text{Cong}(\mathcal{S}) := \{ T \in GL(n, \mathbb{F}) \mid TST^t = \mathcal{S} \} \le GL(n, \mathbb{F})$. We say that *S* is congruence irreducible, if $\text{Cong}(\mathcal{S})$ is irreducible as a matrix group.

- Let matrix group $\mathcal{G} \leq \mathrm{GL}(n, \mathbb{F})$ and $U \leq \mathbb{F}^n$.
- \circ G is reducible if there exists a non-zero and proper *U* such that for any $A \in \mathcal{G}$, $A(U) \leq U$. Otherwise, we call \mathcal{G} irreducible.
- \bullet In this case, U is called an invariant subspace.
- Let matrix space $S \leq M(n, F)$.
- Define $\text{Conj}(\mathcal{S}) := \{ T \in GL(n, \mathbb{F}) \mid T\mathcal{S}T^{-1} = \mathcal{S} \} \leq GL(n, \mathbb{F})$. We say that *S* is conjugacy irreducible, if $Conj(S)$ is irreducible as a matrix group.
- Define $\text{Cong}(\mathcal{S}) := \{ T \in GL(n, \mathbb{F}) \mid TST^t = \mathcal{S} \} \le GL(n, \mathbb{F})$. We say that *S* is congruence irreducible, if $\text{Cong}(\mathcal{S})$ is irreducible as a matrix group.

- Let matrix group $\mathcal{G} \leq \mathrm{GL}(n, \mathbb{F})$ and $U \leq \mathbb{F}^n$.
- \circ G is reducible if there exists a non-zero and proper *U* such that for any $A \in \mathcal{G}$, $A(U) \leq U$. Otherwise, we call \mathcal{G} irreducible.
- \bullet In this case, U is called an invariant subspace.
- Let matrix space $S \leq M(n, F)$.
- Define $\text{Conj}(\mathcal{S}) := \{ T \in GL(n, \mathbb{F}) \mid T\mathcal{S}T^{-1} = \mathcal{S} \} \leq GL(n, \mathbb{F})$. We say that S is conjugacy irreducible, if $Conj(S)$ is irreducible as a matrix group.
- Define $\text{Cong}(\mathcal{S}) := \{ T \in GL(n, \mathbb{F}) \mid TST^t = \mathcal{S} \} \le GL(n, \mathbb{F})$. We say that S is congruence irreducible, if $\text{Cong}(\mathcal{S})$ is irreducible as a matrix group.

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

- ¹ *G is vertex-transitive.*
- ² Φ*^G is irreducibly covariant.*
- \bullet Conj (\mathcal{S}_G) *is irreducible.*
- \bullet Cong(S_G) *is irreducible.*

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

- ¹ *G is vertex-transitive.*
- ² Φ*^G is irreducibly covariant.*
- \bullet
- 4

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

- ¹ *G is vertex-transitive.*
- \bullet
- \odot Conj (\mathcal{S}_G) *is irreducible.*
- \bullet Cong(S_G) *is irreducible.*

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

- \bullet
- ² Φ*^G is irreducibly covariant.*
- \odot Conj (\mathcal{S}_G) *is irreducible.*
- 4

Theorem (Bannink–Brïet–Labib–Maassen'2020, Proposition 3.7)

For any d-regular graph G, the spectral expansion of G equals the spectral expansion of Φ_G *.*

• Inspired by this work in [BBLM20], we also investigated the linear-algebraic expanders generalized from graphs in the follow-up work¹.

For any undirected graph G, the vertex expansion of G equals the dimension expansion of B*G.*

Theorem (Bannink–Brïet–Labib–Maassen'2020, Proposition 3.7)

For any d-regular graph G, the spectral expansion of G equals the spectral expansion of Φ_G *.*

• Inspired by this work in [BBLM20], we also investigated the linear-algebraic expanders generalized from graphs in the follow-up work¹.

For any undirected graph G, the vertex expansion of G equals the dimension expansion of B*G.*

Theorem (Bannink–Brïet–Labib–Maassen'2020, Proposition 3.7)

For any d-regular graph G, the spectral expansion of G equals the spectral expansion of Φ_G *.*

• Inspired by this work in [BBLM20], we also investigated the linear-algebraic expanders generalized from graphs in the follow-up work¹.

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

For any undirected graph G, the vertex expansion of G equals the dimension expansion of B*G.*

- \bullet Let G be an undirected graph.
- \bullet The vertex expansion of G is defined as

$$
\mu(G) := \min_{\substack{W \subseteq [n] \\ 1 \le |W| \le \frac{n}{2}}} \frac{|\partial_{\text{out}}(W)|}{|W|},
$$

- Let $\mathbf{B} \coloneqq (B_1, \ldots, B_m) \in M(n, \mathbb{F})^m$ be a matrix tuple.
- Define $\mathbf{B}(V) := \langle \cup_{i \in [m]} B_i(V) \rangle$ for $V \leq \mathbb{F}^n$.
- The dimension expansion of **B** is defined as

$$
\mu(\mathbf{B}) \coloneqq \min_{\substack{V \leq \mathbb{F}^n \\ 1 \leq \dim(V) \leq \frac{n}{2}}} \frac{\dim(V + \mathbf{B}(V)) - \dim(V)}{\dim(V)}.
$$

- Let *G* be an undirected graph.
- \bullet The vertex expansion of G is defined as

$$
\mu(G) := \min_{\substack{W \subseteq [n] \\ 1 \le |W| \le \frac{n}{2}}} \frac{|\partial_{\text{out}}(W)|}{|W|},
$$

- Let $\mathbf{B} \coloneqq (B_1, \ldots, B_m) \in M(n, \mathbb{F})^m$ be a matrix tuple.
- Define $\mathbf{B}(V) := \langle \cup_{i \in [m]} B_i(V) \rangle$ for $V \leq \mathbb{F}^n$.
- The dimension expansion of **B** is defined as

$$
\mu(\mathbf{B}) \coloneqq \min_{\substack{V \leq \mathbb{F}^n \\ 1 \leq \dim(V) \leq \frac{n}{2}}} \frac{\dim(V + \mathbf{B}(V)) - \dim(V)}{\dim(V)}.
$$

- \bullet Let G be an undirected graph.
- \bullet The vertex expansion of G is defined as

$$
\mu(G) := \min_{\substack{W \subseteq [n] \\ 1 \le |W| \le \frac{n}{2}}} \frac{|\partial_{\text{out}}(W)|}{|W|},
$$

- Let $\mathbf{B} \coloneqq (B_1, \ldots, B_m) \in M(n, \mathbb{F})^m$ be a matrix tuple.
- Define $\mathbf{B}(V) := \langle \cup_{i \in [m]} B_i(V) \rangle$ for $V \leq \mathbb{F}^n$.
- The dimension expansion of **B** is defined as

$$
\mu(\mathbf{B}) \coloneqq \min_{\substack{V \leq \mathbb{F}^n \\ 1 \leq \dim(V) \leq \frac{n}{2}}} \frac{\dim(V + \mathbf{B}(V)) - \dim(V)}{\dim(V)}.
$$

- Let *G* be an undirected graph.
- \bullet The vertex expansion of G is defined as

$$
\mu(G) := \min_{\substack{W \subseteq [n] \\ 1 \le |W| \le \frac{n}{2}}} \frac{|\partial_{\text{out}}(W)|}{|W|},
$$

- Let $\mathbf{B} \coloneqq (B_1, \ldots, B_m) \in M(n, \mathbb{F})^m$ be a matrix tuple.
- Define $\mathbf{B}(V) := \langle \cup_{i \in [m]} B_i(V) \rangle$ for $V \leq \mathbb{F}^n$.
- The dimension expansion of **B** is defined as

$$
\mu(\mathbf{B}) \coloneqq \min_{\substack{V \leq \mathbb{F}^n \\ 1 \leq \dim(V) \leq \frac{n}{2}}} \frac{\dim(V + \mathbf{B}(V)) - \dim(V)}{\dim(V)}.
$$

- \bullet Let G be an undirected graph.
- \bullet The vertex expansion of G is defined as

$$
\mu(G) := \min_{\substack{W \subseteq [n] \\ 1 \leq |W| \leq \frac{n}{2}}} \frac{|\partial_{\text{out}}(W)|}{|W|},
$$

- Let $\mathbf{B} \coloneqq (B_1, \ldots, B_m) \in M(n, \mathbb{F})^m$ be a matrix tuple.
- Define $\mathbf{B}(V) := \langle \cup_{i \in [m]} B_i(V) \rangle$ for $V \leq \mathbb{F}^n$.
- \bullet The dimension expansion of $\mathbf B$ is defined as

$$
\mu(\mathbf{B}) \coloneqq \min_{\substack{V \leq \mathbb{F}^n \\ 1 \leq \dim(V) \leq \frac{n}{2}}} \frac{\dim(V + \mathbf{B}(V)) - \dim(V)}{\dim(V)}.
$$

The dimension expansion of **B** is defined as

 $\mu(\mathbf{B}) \coloneqq \text{min}$ *V*≤**F**^{*n*}</sup>
1≤dim(*V*)≤ $\frac{n}{2}$ $dim(V + B(V)) - dim(V)$ $\frac{\text{dim}(V)}{\text{dim}(V)}$.

- Let $\mathbf{B}_G \coloneqq (\mathbf{E}_{i,j} : \{i, j\} \in E(G))$ be the graphical matrix tuple of *G*.
- Consider when *V* is a coordinate subspace, e.g, $V = \text{span}\{e_2, e_3\}.$
- \bullet In this case, *V* is treated as a vertex subset, so dim(*V*) corresponds to $|W|$.
- Note that $E_{i,j}e_j = e_i$, and $E_{i,j}e_k = 0$ when $k \neq j$.
- \bullet In this case, dim(*V* + **B**(*V*)) − dim(*V*) is doing the same as $|\partial_{\text{out}}(W)|$.

The proof is based on the ideas of [Dvir–Shpilka'11, Dvir–Wigderson'10].

The dimension expansion of **B** is defined as

 $\mu(\mathbf{B}) \coloneqq \text{min}$ *V*≤**F**^{*n*}</sup>
1≤dim(*V*)≤ $\frac{n}{2}$ $dim(V + B(V)) - dim(V)$ $\frac{\text{dim}(V)}{\text{dim}(V)}$.

- Let $\mathbf{B}_G \coloneqq (\mathbf{E}_{i,j} : \{i,j\} \in E(G))$ be the graphical matrix tuple of *G*.
- Consider when *V* is a coordinate subspace, e.g, $V = \text{span}\{e_2, e_3\}.$
- \bullet In this case, *V* is treated as a vertex subset, so dim(*V*) corresponds to $|W|$.
- Note that $E_{i,j}e_j = e_i$, and $E_{i,j}e_k = 0$ when $k \neq j$.
- \bullet In this case, dim(*V* + **B**(*V*)) − dim(*V*) is doing the same as $|\partial_{\text{out}}(W)|$.

The proof is based on the ideas of [Dvir–Shpilka'11, Dvir–Wigderson'10].

The dimension expansion of **B** is defined as

$$
\mu(\mathbf{B}) \coloneqq \min_{\substack{V \leq \mathbb{F}^n \\ 1 \leq \dim(V) \leq \frac{n}{2}}} \frac{\dim(V + \mathbf{B}(V)) - \dim(V)}{\dim(V)}.
$$

- Let $\mathbf{B}_G \coloneqq (\mathbf{E}_{i,j} : \{i,j\} \in E(G))$ be the graphical matrix tuple of *G*.
- Consider when *V* is a coordinate subspace, e.g, $V = \text{span}\{e_2, e_3\}.$
- \bullet In this case, *V* is treated as a vertex subset, so dim(*V*) corresponds to $|W|$.
- Note that $E_{i,j}e_j = e_i$, and $E_{i,j}e_k = 0$ when $k \neq j$.
- \bullet In this case, dim(*V* + **B**(*V*)) − dim(*V*) is doing the same as $|\partial_{\text{out}}(W)|$.

The proof is based on the ideas of [Dvir–Shpilka'11, Dvir–Wigderson'10].

The dimension expansion of **B** is defined as

$$
\mu(\mathbf{B}) \coloneqq \min_{\substack{V \leq \mathbb{F}^n \\ 1 \leq \dim(V) \leq \frac{n}{2}}} \frac{\dim(V + \mathbf{B}(V)) - \dim(V)}{\dim(V)}.
$$

- Let $\mathbf{B}_G \coloneqq (\mathbf{E}_{i,j} : \{i,j\} \in E(G))$ be the graphical matrix tuple of *G*.
- Consider when *V* is a coordinate subspace, e.g, $V = \text{span}\{e_2, e_3\}.$
- \bullet In this case, *V* is treated as a vertex subset, so dim(*V*) corresponds to $|W|$.
- Note that $E_{i,j}e_j = e_i$, and $E_{i,j}e_k = 0$ when $k \neq j$.
- \bullet In this case, dim(*V* + **B**(*V*)) − dim(*V*) is doing the same as $|\partial_{\text{out}}(W)|$.

The proof is based on the ideas of [Dvir–Shpilka'11, Dvir–Wigderson'10].

The dimension expansion of **B** is defined as

$$
\mu(\mathbf{B}) \coloneqq \min_{\substack{V \leq \mathbb{F}^n \\ 1 \leq \dim(V) \leq \frac{n}{2}}} \frac{\dim(V + \mathbf{B}(V)) - \dim(V)}{\dim(V)}.
$$

- Let $\mathbf{B}_G \coloneqq (\mathbf{E}_{i,j} : \{i,j\} \in E(G))$ be the graphical matrix tuple of *G*.
- Consider when *V* is a coordinate subspace, e.g, $V = \text{span}\{e_2, e_3\}.$
- \bullet In this case, *V* is treated as a vertex subset, so dim(*V*) corresponds to $|W|$.
- Note that $E_{i,j}e_j = e_i$, and $E_{i,j}e_k = 0$ when $k \neq j$.
- \bullet In this case, dim(*V* + **B**(*V*)) − dim(*V*) is doing the same as $|\partial_{\text{out}}(W)|$.

The proof is based on the ideas of [Dvir–Shpilka'11, Dvir–Wigderson'10].

The dimension expansion of **B** is defined as

$$
\mu(\mathbf{B}) \coloneqq \min_{\substack{V \leq \mathbb{F}^n \\ 1 \leq \dim(V) \leq \frac{n}{2}}} \frac{\dim(V + \mathbf{B}(V)) - \dim(V)}{\dim(V)}.
$$

- Let $\mathbf{B}_G \coloneqq (\mathbf{E}_{i,j} : \{i,j\} \in E(G))$ be the graphical matrix tuple of *G*.
- Consider when *V* is a coordinate subspace, e.g, $V = \text{span}\{e_2, e_3\}.$
- \bullet In this case, *V* is treated as a vertex subset, so dim(*V*) corresponds to $|W|$.
- Note that $E_{i,j}e_j = e_i$, and $E_{i,j}e_k = 0$ when $k \neq j$.
- \bullet In this case, dim(*V* + **B**(*V*)) − dim(*V*) is doing the same as $|\partial_{\text{out}}(W)|$.

The proof is based on the ideas of [Dvir–Shpilka'11, Dvir–Wigderson'10].

The dimension expansion of **B** is defined as

$$
\mu(\mathbf{B}) \coloneqq \min_{\substack{V \leq \mathbb{F}^n \\ 1 \leq \dim(V) \leq \frac{n}{2}}} \frac{\dim(V + \mathbf{B}(V)) - \dim(V)}{\dim(V)}.
$$

- Let $\mathbf{B}_G \coloneqq (\mathbf{E}_{i,j} : \{i,j\} \in E(G))$ be the graphical matrix tuple of *G*.
- Consider when *V* is a coordinate subspace, e.g, $V = \text{span}\{e_2, e_3\}.$
- \bullet In this case, *V* is treated as a vertex subset, so dim(*V*) corresponds to $|W|$.
- Note that $E_{i,j}e_j = e_i$, and $E_{i,j}e_k = 0$ when $k \neq j$.
- \bullet In this case, dim(*V* + **B**(*V*)) *−* dim(*V*) is doing the same as $|\partial_{\text{out}}(W)|$.

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

The proof is based on the ideas of [Dvir–Shpilka'11, Dvir–Wigderson'10].

The dimension expansion of **B** is defined as

$$
\mu(\mathbf{B}) \coloneqq \min_{\substack{V \leq \mathbb{F}^n \\ 1 \leq \dim(V) \leq \frac{n}{2}}} \frac{\dim(V + \mathbf{B}(V)) - \dim(V)}{\dim(V)}.
$$

- Let $\mathbf{B}_G \coloneqq (\mathbf{E}_{i,j} : \{i,j\} \in E(G))$ be the graphical matrix tuple of *G*.
- Consider when *V* is a coordinate subspace, e.g, $V = \text{span}\{e_2, e_3\}.$
- \bullet In this case, *V* is treated as a vertex subset, so dim(*V*) corresponds to $|W|$.
- Note that $E_{i,j}e_j = e_i$, and $E_{i,j}e_k = 0$ when $k \neq j$.
- \bullet In this case, dim(*V* + **B**(*V*)) *−* dim(*V*) is doing the same as $|\partial_{\text{out}}(W)|$.

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

The proof is based on the ideas of [Dvir–Shpilka'11, Dvir–Wigderson'10].

- \bullet In the classical setting, all three expansion are equivalent.
- However, this is not the case for linear-algebraic expanders.

Constant-degree quantum expanders are dimension expanders; there are dimension expanders which are not quantum expanders.

- \bullet In the classical setting, all three expansion are equivalent.
- \bullet However, this is not the case for linear-algebraic expanders.

Constant-degree quantum expanders are dimension expanders; there are dimension expanders which are not quantum expanders.

- \bullet In the classical setting, all three expansion are equivalent.
- \bullet However, this is not the case for linear-algebraic expanders.

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang'2022)

Constant-degree quantum expanders are dimension expanders; there are dimension expanders which are not quantum expanders.

Summary

Basic correspondence: for any bipartite/directed graph *G*,

 G satisfies $P \iff S_G$ satisfies Q

for a graph-theoretic property *P* and a linear-algebraic property *Q*. Inherited correspondence: for any bipartite/directed graph *H*,

Max. size of $G \subseteq H$ satisfying $P = \text{Max. }$ dim of $S \leq S_H$ satisfying Q

 \bullet From a graph *G*, we can construct not only S_G but also Φ_G , \mathbf{B}_G , and even in other context, then establish the connection between their properties.

Question and Answer

Thank you so much!