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A quick introduction about matrix spaces.

Starting point: Existence of perfect matchings <= Singularity

A general framework of such connections.

Another example: Acyclicity <= Nilpotency

@ More results with implication to quantum information theory.
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o A matrix space is a linear space spanned by matrices.

e Let M(n,F) denote the linear space of n x n matrices over a field F. Then
a linear subspace S < M(n,F) is called a matrix space.
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What is a matrix space?

A matrix space is a linear space spanned by matrices.

Let M(n,F) denote the linear space of n x n matrices over a field F. Then
a linear subspace S < M(n,F) is called a matrix space.

Specify a basis Mi,..., My for S.
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o A matrix space is a linear space spanned by matrices.

e Let M(n,F) denote the linear space of n x n matrices over a field F. Then
a linear subspace S < M(n,F) is called a matrix space.

@ Specify a basis My, ..., My for S.

o &S is the set of all linear combinations of My, ..., My.
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o A matrix space is a linear space spanned by matrices.

e Let M(n,F) denote the linear space of n x n matrices over a field F. Then
a linear subspace S < M(n,F) is called a matrix space.

@ Specify a basis My, ..., My for S.
o &S is the set of all linear combinations of My, ..., My.

@ S corresponds to the symbolic matrix x My + - -+ + £4M4, whose entries
are linear forms in the variables zy, ..., x4,

UTS:Q 58


https://qsi.uts.edu.au/

What is a matrix space?

o A matrix space is a linear space spanned by matrices.

e Let M(n,F) denote the linear space of n x n matrices over a field F. Then
a linear subspace S < M(n,F) is called a matrix space.

@ Specify a basis My, ..., My for S.
o &S is the set of all linear combinations of My, ..., My.

@ S corresponds to the symbolic matrix x My + - -+ + £4M4, whose entries
are linear forms in the variables z, ..., z4, €.g.,

3 2 1 0\ (3m+z: 2m
1 <—1 0)*”52 (2 —2>_(2x2—$1 —2x2>‘
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What is a matrix space?

o A matrix space is a linear space spanned by matrices.

e Let M(n,F) denote the linear space of n x n matrices over a field F. Then
a linear subspace S < M(n,F) is called a matrix space.

@ Specify a basis My, ..., My for S.
o &S is the set of all linear combinations of My, ..., My.

@ S corresponds to the symbolic matrix x My + - -+ + £4M4, whose entries
are linear forms in the variables z, ..., z4, €.g.,

3 2 1 0\ (3m+z: 2m
1 <—1 0)*”52 (2 —2>_(2x2—$1 —2x2>‘

e S corresponds to a superoperator ®(X) = Zle M; XM .
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From graphs to matrix spaces

e For ne N, [n]:={1,2,...,n}.
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e For ne N, [n]:={1,2,...,n}.
e For (4,j) € [n] x [n], let E; ; be the elementary matrix in M(n,F) where the
(4, j)th entry is 1, and the remaining entries are 0.
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e For (4,j) € [n] x [n], let E; ; be the elementary matrix in M(n,F) where the
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e For ne N, [n]:={1,2,...,n}.
e For (4,j) € [n] x [n], let E; ; be the elementary matrix in M(n,F) where the
(4, j)th entry is 1, and the remaining entries are 0. For example,

0 00
E2,3 S M(3,F) =10 0 1
0 00

e For a bipartite graph G = ([n] U [n], E) or a directed graph G = ([n], E),
the adjacency matrix is
AG = Z Ei,j~

(i,j)eE
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From graphs to matrix spaces

e For ne N, [n]:={1,2,...,n}.
e For (4,j) € [n] x [n], let E; ; be the elementary matrix in M(n,F) where the
(4, j)th entry is 1, and the remaining entries are 0. For example,

0 00
E2,3 S M(3,F) =10 0 1
0 00

e For a bipartite graph G = ([n] U [n], E) or a directed graph G = ([n], E),
the adjacency matrix is
AG = Z Ei,j~

(i,j)EE
@ The graphical matrix space (over F) corresponding to G is

S¢ :=span{E;; | (7,j) € E}.
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Our starting point

Bipartite Graph G

1 1

Graphical Matrix Space S¢

o

Ty

o
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Our starting point

Bipartite Graph G Graphical Matrix Space S¢
1 1
0 I 0
2 2 0 0 m
T3 0 T4

Theorem (Tutte’1947, Edmonds’1967, Lovasz'1979)

G has a perfect matching iff Sg has some invertible matrices.
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Our starting point

Bipartite Graph G Graphical Matrix Space S¢
1 1
0 C1 0
2 2 0 0 Co
C3 0 0

Theorem (Tutte’1947, Edmonds’1967, Lovasz'1979)

G has a perfect matching iff Sg has some invertible matrices.

(=) Take the matrix supporting on a perfect matching. This would yield an
invertible matrix.
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Our starting point

Bipartite Graph G Graphical Matrix Space S¢
1 1

Theorem (Tutte’1947, Edmonds’1967, Lovasz'1979)

G has a perfect matching iff Sg has some invertible matrices.

(«=) Take the symbolic matrix of S¢. Existing invertible matrices implies the

1 %o, # 0 and thereby [\, 0, # 0
for some o. Then the edge set {(i,0;) : i € [n]} gives a perfect matching. [

determinant polynomial Y sgn(o) [T\,
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Further observation

Fact (about perfect matching)

If a bipartite graph G = ([n] x [n], E) doesn’t contain any perfect matching, then
|E| < n(n—1).
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e dim(S) = n(n — 1) is possible by this example,
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Further observation

Fact (about perfect matching)

If a bipartite graph G = ([n] x [n], E) doesn’t contain any perfect matching, then
|E| < n(n—1).

If § < M(n,F) doesn’t contain any invertible matriz, how large can S be?

e dim(S) = n(n — 1) is possible by this example,

T1,1 T1,2 <. Ti,n

)

Tn—1,1 Tpn—1,2 --- Tn—1,n
0 0 0

Theorem (Dieudonné’1948, Flanders’1962, Meshulam’1985)

If § < M(n,F) doesn’t contain any invertible matriz, then dimS < n(n— 1).
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o Note that S doesn’t have to be graphical.

UTS:Q 58


https://qsi.uts.edu.au/

Correspondences between matrix spaces and graphs

@ @ has no perfect matching = S¢ has no invertible matrix
o We call it a basic correspondence between G and Sg.

e Max. size of such G C K, », = Max. dim of such § < M(n,F)
o Note that S doesn’t have to be graphical.

UTS:Q 58


https://qsi.uts.edu.au/

Correspondences between matrix spaces and graphs

@ @ has no perfect matching = S¢ has no invertible matrix
o We call it a basic correspondence between G and Sg.
e Max. size of such G C K, », = Max. dim of such § < Sk

n,n

o Note that S doesn’t have to be graphical.
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Correspondences between matrix spaces and graphs

@ @ has no perfect matching = S¢ has no invertible matrix
o We call it a basic correspondence between G and Sg.
e Max. size of such G C K, 5, = Max. dim of such § < Sk, ,

o Note that S doesn’t have to be graphical.
?

@ Max. size of such GC H = Max. dim of such § < Sy
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Correspondences between matrix spaces and graphs

@ @ has no perfect matching = S¢ has no invertible matrix
o We call it a basic correspondence between G and Sg.

e Max. size of such G C K, », = Max. dim of such § < Sk, ,
o Note that S doesn’t have to be graphical.

o Max. size of such GC H = Max. dim of such § < Sy

Theorem (Li-Qiao—Wigderson-Wigderson-Zhang'2022)

For any bipartite graph H, the maximum size over all G C H with no perfect
matching = the maximum dim over all S < Sy with no invertible matriz.
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o Note that S doesn’t have to be graphical.

o Max. size of such GC H = Max. dim of such § < Sy
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Correspondences between matrix spaces and graphs

@ @ has no perfect matching = S¢ has no invertible matrix
o We call it a basic correspondence between G and Sg.

e Max. size of such G C K, », = Max. dim of such § < Sk, ,
o Note that S doesn’t have to be graphical.

o Max. size of such GC H = Max. dim of such § < Sy

Theorem (Li-Qiao—Wigderson-Wigderson-Zhang'2022)

For any bipartite graph H, the maximum size over all G C H with no perfect
matching = the maximum dim over all S < Sy with no invertible matriz.

e This theorem generalizes Dieudonné’s theorem.
@ A combinatorial “explanation” of an algebraic property!

o We call it an inherited correspondence.
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A general framework

@ A basic correspondence is a result of the form: for any graph G,

G satisfies P — S satisfies @

for a graph-theoretic property P and a linear-algebraic property Q.
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A general framework

@ A basic correspondence is a result of the form: for any graph G,

G satisfies P — S satisfies @

for a graph-theoretic property P and a linear-algebraic property Q.

@ An inherited correspondence generalizes this to: for any graph H,

Max. size of G C H satisfying P = Max. dim of § < Sy satisfying @
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A general framework

@ A basic correspondence is a result of the form: for any graph G,

G satisfies P — S satisfies @

for a graph-theoretic property P and a linear-algebraic property Q.

@ An inherited correspondence generalizes this to: for any graph H,

Max. size of G C H satisfying P = Max. dim of § < Sy satisfying @

@ The basic correspondence immediately implies the < result.

e G has no matching of size r <= Every matrix in Sg has rank < r
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A general framework

@ A basic correspondence is a result of the form: for any graph G,

G satisfies P = S satisfies @

for a graph-theoretic property P and a linear-algebraic property Q.
@ An inherited correspondence generalizes this to: for any graph H,

Max. size of G C H satisfying P = Max. dim of § < Sy satisfying @

@ The basic correspondence immediately implies the < result.

@ G has no matching of size r <= Every matrix in Sg has rank < r

Theorem (Li—Qiao—Wigderson-Wigderson—Zhang’2022)

For any bipartite graph H, the maz. size over all G C H with no matching of
size v = the max. dim over all S < Sy in which every matriz has rank < r.
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A general framework
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@ An inherited correspondence generalizes this to: for any graph H,
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A general framework

@ A basic correspondence is a result of the form: for any graph G,

G satisfies P = S satisfies @

for a graph-theoretic property P and a linear-algebraic property Q.
@ An inherited correspondence generalizes this to: for any graph H,

Max. size of G C H satisfying P = Max. dim of § < Sy satisfying @

@ The basic correspondence immediately implies the < result.

@ G has no matching of size r <= Every matrix in Sg has rank < r

Theorem (Li—Qiao—Wigderson-Wigderson—Zhang’2022)

For any bipartite graph H, the maz. size over all G C H with no matching of
size v = the max. dim over all S < Sy in which every matriz has rank < r.

@ The proof idea of > is based on Meshulam’s proof [Mes85] of Dieudonné’s
theorem. urs:asi
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o A graph is acyclic if it has no cycles.
e A matrix B is nilpotent, if B* = 0 for some k € N.
e A directed graph G is acyclic iff its adjacency matrix A is nilpotent.
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Connection between acyclicity and nilpotency

A graph is acyclic if it has no cycles.
A matrix B is nilpotent, if B¥ = 0 for some k € N.

A directed graph G is acyclic iff its adjacency matrix A is nilpotent.
e Note that this doesn’t hold over the field of order 2. For example,

G )=6
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A matrix B is nilpotent, if B¥ = 0 for some k € N.

A directed graph G is acyclic iff its adjacency matrix A is nilpotent.
e Note that this doesn’t hold over the field of order 2. For example,
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e A matrix space S < M(n,F) is nil, if any B € S is nilpotent.

@ Another basic correspondence: a directed graph G is acyclic iff its graphical
matrix space Sg is nil.
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Connection between acyclicity and nilpotency

A graph is acyclic if it has no cycles.
A matrix B is nilpotent, if B¥ = 0 for some k € N.

A directed graph G is acyclic iff its adjacency matrix A is nilpotent.
e Note that this doesn’t hold over the field of order 2. For example,

G )=6

e A matrix space S < M(n,F) is nil, if any B € S is nilpotent.

@ Another basic correspondence: a directed graph G is acyclic iff its graphical
matrix space Sg is nil.
This holds over any field.
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Connection between acyclicity and nilpotency

Fact (about directed acyclic graph)

If a directed graph G = ([n], E) doesn’t contain any cycles, then |E| < (}).
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Connection between acyclicity and nilpotency

Fact (about directed acyclic graph)

If a directed graph G = ([n], E) doesn’t contain any cycles, then |E| < (}).

If S < M(n,F) is nil, how large can S be?

e dim(S) = (") is possible by this example:

2
0 x1,1 o T1,n—2 Z1,n—1
0 0 T2,1 Tt x2,n—2
0 0 0 Tn—1,1
0 0 0 0 0
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Connection between acyclicity and nilpotency

Fact (about directed acyclic graph)

If a directed graph G = ([n], E) doesn’t contain any cycles, then |E| < (}).

If S < M(n,F) is nil, how large can S be?

e dim(S) = (’2’) is possible by this example:

0 x1,1 o T1,n—2 Z1,n—1
0 0 T2,1 Tt x2,n—2
0 0 0 Tn—1,1
0 0 0 0 0

Theorem (Gerstenhaber’1958, Serezkin’1985)

If § <M(n,F) is nil, then dim S < (g)
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Connection between acyclicity and nilpotency

@ A basic correspondence: for any directed graph G,

G is acyclic = S is nil
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Connection between acyclicity and nilpotency

o A basic correspondence: for any directed graph G,
G is acyclic = S¢ is nil

@ An inherited correspondence: for any directed graph H,

Max. size of G C H being acyclic z Max. dim of § < Sy being nil
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Connection between acyclicity and nilpotency

@ A basic correspondence: for any directed graph G,
G is acyclic = S is nil
@ An inherited correspondence: for any directed graph H,

Max. size of G C H being acyclic = Max. dim of § < Sy being nil

Theorem (Li-Qiao—Wigderson—-Wigderson—Zhang’2022)

For any directed graph H, the mazimum size over all acyclic subgraph G C H
= the maximum dim over all nil subspace S < Spg.
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@ A basic correspondence: for any directed graph G,
G is acyclic = S is nil
@ An inherited correspondence: for any directed graph H,

Max. size of G C H being acyclic = Max. dim of § < Sy being nil

Theorem (Li-Qiao—Wigderson—-Wigderson—Zhang’2022)

For any directed graph H, the mazimum size over all acyclic subgraph G C H
= the maximum dim over all nil subspace S < Spg.

o This generalizes Gerstenhaber’s theorem.

e We adapt de Seguins Pazzis’s proof [dSP13] of Gerstenhaber’s theorem to
prove the > direction.
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Connection between acyclicity and nilpotency

@ A basic correspondence: for any directed graph G,
G is acyclic = S is nil
@ An inherited correspondence: for any directed graph H,

Max. size of G C H being acyclic = Max. dim of § < Sy being nil

Theorem (Li-Qiao—Wigderson—-Wigderson—Zhang’2022)

For any directed graph H, the mazimum size over all acyclic subgraph G C H
= the maximum dim over all nil subspace S < Spg.

o This generalizes Gerstenhaber’s theorem.

e We adapt de Seguins Pazzis’s proof [dSP13] of Gerstenhaber’s theorem to
prove the > direction.

e Corollary: Given § < M(n,F), it is NP-hard to determine the maximum
dimension of nil subspace of S.
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@ Basic correspondence: for any bipartite/directed graph G,

G satisfies P = S¢ satisfies @

for a graph-theoretic property P and a linear-algebraic property .
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G satisfies P = S¢ satisfies @

for a graph-theoretic property P and a linear-algebraic property .

@ Inherited correspondence: for any bipartite/directed graph H,

Max. size of G C H satisfying P = Max. dim of § < Sy satisfying @

o We also have other results: strong-connectivity and irreducibility, isomor-
phism and conjugacy/congruence...
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@ Basic correspondence: for any bipartite/directed graph G,

G satisfies P = S¢ satisfies @

for a graph-theoretic property P and a linear-algebraic property .

@ Inherited correspondence: for any bipartite/directed graph H,

Max. size of G C H satisfying P = Max. dim of § < Sy satisfying @

o We also have other results: strong-connectivity and irreducibility, isomor-
phism and conjugacy/congruence...

@ Such connections are not only found for matrix spaces!
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e Embed a d-regular graph G to a quantum channel ® 4 : M(n, C) — M(n, C)
[Bannink-Briet-Labib—Maassen’2020].
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e Embed a d-regular graph G to a quantum channel ® 4 : M(n, C) — M(n, C)
[Bannink-Briet-Labib—Maassen’2020].

@ For every X € M(n,C), the graphical quantum channel of G is defined as
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Theorem (Bannink—Briet—Labib—Maassen’2020, Proposition 3.7)

For any d-reqular graph G, the spectral expansion of G equals the spectral
expansion of ®g.
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e Embed a d-regular graph G to a quantum channel ® 4 : M(n, C) — M(n, C)
[Bannink-Briet-Labib—Maassen’2020].

@ For every X € M(n,C), the graphical quantum channel of G is defined as

1 *
@G(X) = Zi Z Ei,jXEi,j'

(L)€l

Theorem (Bannink—Briet—Labib—Maassen’2020, Proposition 3.7)

For any d-reqular graph G, the spectral expansion of G equals the spectral
expansion of ®g.

@ & is irreducibly covariant, if there exists a compact group I' and a contin-
uous irreducible unitary representation U : I' — U(n) such that for any
g€ T'and X € M(n,C), we have ®(U(g)XU(g9)*) = U(g9)®(X) U(g)*.
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Previous works on graphical quantum channels

e Embed a d-regular graph G to a quantum channel ® 4 : M(n, C) — M(n, C)
[Bannink-Briet-Labib—Maassen’2020].

@ For every X € M(n,C), the graphical quantum channel of G is defined as

1 *
@G(X) = Zi Z Ei,jXEi,j'

(L)€l

Theorem (Bannink—Briet—Labib—Maassen’2020, Proposition 3.7)

For any d-reqular graph G, the spectral expansion of G equals the spectral
expansion of ®g.

@ & is irreducibly covariant, if there exists a compact group I' and a contin-
uous irreducible unitary representation U : I' — U(n) such that for any
g€ T'and X € M(n,C), we have ®(U(g)XU(g9)*) = U(g9)®(X) U(g)*.

Theorem (Bannink—Briet—Labib—Maassen’2020, Proposition 3.8)

A d-regular graph G is vertex-transitive iff ® ¢ is irreducibly covariant.
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Vertex-transitivity

e Let G be a directed graph. Let Aut(G) be the automorphism group of G.
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e Let G be a directed graph. Let Aut(G) be the automorphism group of G.

@ Recall that G is vertex-transitive, if Aut(G) is a transitive group.

UTS:Q 58


https://qsi.uts.edu.au/

Vertex-transit

e Let G be a directed graph. Let Aut(G) be the automorphism group of G.

@ Recall that G is vertex-transitive, if Aut(G) is a transitive group.

triangle graph 3—empty graph
°

square graph 4—empty graph 2—-ladder rung tetrahedral
° graph graph

A

pentatope graph S5—cycle graph S—empty graph
[ ]
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Conjugacy/congruence irreducibility

o Let matrix group G < GL(n,F) and U < F™.
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Conjugacy/congruence irreducibility

o Let matrix group G < GL(n,F) and U < F™.

e G is reducible if there exists a non-zero and proper U such that for any
A e g, A(U) < U. Otherwise, we call G irreducible.
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o Let matrix group G < GL(n,F) and U < F™.

e G is reducible if there exists a non-zero and proper U such that for any
A e g, A(U) < U. Otherwise, we call G irreducible.

@ In this case, U is called an invariant subspace.
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Conjugacy/congruence irreducibility

Let matrix group G < GL(n,F) and U < F".

e G is reducible if there exists a non-zero and proper U such that for any
A e g, A(U) < U. Otherwise, we call G irreducible.

@ In this case, U is called an invariant subspace.

Let matrix space S < M(n,F).
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Conjugacy/congruence irreducibility

Let matrix group G < GL(n,F) and U < F".

e G is reducible if there exists a non-zero and proper U such that for any
A e g, A(U) < U. Otherwise, we call G irreducible.

@ In this case, U is called an invariant subspace.

e Let matrix space S < M(n, F).
o Define Conj(S) := {T € GL(n,F) | TST! = S} < GL(n,F). We say that
S is conjugacy irreducible, if Conj(S) is irreducible as a matrix group.
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Conjugacy/congruence irreducibility

o Let matrix group G < GL(n,F) and U < F™.

e G is reducible if there exists a non-zero and proper U such that for any
A e g, A(U) < U. Otherwise, we call G irreducible.

@ In this case, U is called an invariant subspace.

e Let matrix space S < M(n, F).

o Define Conj(S) := {T € GL(n,F) | TST! = S} < GL(n,F). We say that
S is conjugacy irreducible, if Conj(S) is irreducible as a matrix group.

e Define Cong(S) := {T € GL(n,F) | TST' = S} < GL(n,F). We say that
S is congruence irreducible, if Cong(S) is irreducible as a matrix group.
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Implication to quantum information

Theorem (Li-Qiao—Wigd n—Wigc n—Zhang’2022)

Let G be a d-regular graph, and Sg and ®g be the graphical matriz space
and quantum channel associated with G, respectively. Then the following are
equivalent:

Q@ G is vertex-transitive.

Q ¥ is irreducibly covariant.
@ Conj(Sq) is irreducible.

@ Cong(Sq) is irreducible.
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Implication to quantum information

Theorem (Li-Qiao ‘derson-Wigderson-Zhang’2

Let G be a d-regular graph, and Sg and ®g be the graphical matriz space
and quantum channel associated with G, respectively. Then the following are
equivalent:

Q@ G is vertex-transitive.

@ P is irreducibly covariant.
o
(=)
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Implication to quantum information

Theorem (Li-Qiao—Wigd n—Wigc n—Zhang’2022)

Let G be a d-regular graph, and Sg and ®g be the graphical matriz space
and quantum channel associated with G, respectively. Then the following are
equivalent:

Q@ G is vertez-transitive.
(2]

@ Conj(Sq) is irreducible.
© Cong(Sq) is irreducible.
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Implication to quantum information

Theorem (Li-Qiao ‘derson-Wigderson-Zhang’2

Let G be a d-regular graph, and Sg and ®g be the graphical matriz space
and quantum channel associated with G, respectively. Then the following are
equivalent:

()

@ P is irreducibly covariant.
@ Conj(Sq) is irreducible.

(=)
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Our further work

Theorem (Bannink—Briet—Labib—Maassen’2020, Proposition 3.7)

For any d-regular graph G, the spectral expansion of G equals the spectral
expansion of ®g.
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Our further work

Theorem (Bannink—Briet—Labib—Maassen’2020, Proposition 3.7)

For any d-regular graph G, the spectral expansion of G equals the spectral
expansion of ®g.

e Inspired by this work in [BBLM20], we also investigated the linear-algebraic
expanders generalized from graphs in the follow-up work!.
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Our further work

Theorem (Bannink—Briet—Labib—Maassen’2020, Proposition 3.7)

For any d-regular graph G, the spectral expansion of G equals the spectral
expansion of ®g.

e Inspired by this work in [BBLM20], we also investigated the linear-algebraic
expanders generalized from graphs in the follow-up work!.

Theorem (Li-Qiao—Wigderson—Wigderson—Zhang’'2022)

For any undirected graph G, the vertex expansion of G equals the dimension
expansion of Bg.
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Some explanation

e Let G be an undirected graph.
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Some explanation

e Let G be an undirected graph.

@ The vertex expansion of G is defined as

: |8out(VV)‘
G):= min —F————,
e wCln] | W]
1< wWI<3

where Ot (W) :={je [n]\ W: T ie W, s.t. {i,j} € E}.
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@ The vertex expansion of G is defined as

: |8out(VV)‘
G):= min —F————,
e wCln] | W]
1< wWI<3

where Ot (W) :={je [n]\ W: T ie W, s.t. {i,j} € E}.
e Let B := (By,...,By) € M(n,F)™ be a matrix tuple.
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e Let G be an undirected graph.

@ The vertex expansion of G is defined as
. |8out( VV)‘
G):= min —F————,
w ) weln | W]
1I<|WI<3

where Ot (W) :={je [n]\ W: T ie W, s.t. {i,j} € E}.
e Let B := (By,...,By) € M(n,F)™ be a matrix tuple.
Define B(V) := (Ujg[m) Bi(V)) for V < F”.
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Some explanation

e Let G be an undirected graph.

@ The vertex expansion of G is defined as
. |8out( VV)‘
G):= min —F————,
w ) weln | W]
1I<|WI<3

where Ot (W) :={je [n]\ W: T ie W, s.t. {i,j} € E}.
e Let B := (By,...,By) € M(n,F)™ be a matrix tuple.
Define B(V) := (Ujg[m) Bi(V)) for V < F”.

@ The dimension expansion of B is defined as

N dim(V+ B(V)) — dim(V)
V<F" dim(V) )
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Some explanation

@ The dimension expansion of B is defined as

B e Am(V+B() —dim(V)

V<F" dim
1<dim(V)<3% m(V)
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Some explanation

@ The dimension expansion of B is defined as

. . dim(V+ B(V)) — dim(V)
w(B):= min dim(V) ‘

1<dim(V)<3

o Let Bg = (E;; : {i,7} € E(G)) be the graphical matrix tuple of G.
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Some explanation

@ The dimension expansion of B is defined as

. . dim(V+ B(V)) — dim(V)
w(B):= min dim(V) ‘

1<dim(V)<3
o Let Bg = (E;; : {i,7} € E(G)) be the graphical matrix tuple of G.

e Consider when Vis a coordinate subspace, e.g, V = span{es, es}.
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Some explanation

@ The dimension expansion of B is defined as

. . dim(V+ B(V)) — dim(V)
w(B):= min dim(V) ‘

1<dim(V)<2
Let B¢ == (E;; : {4,j} € E(G)) be the graphical matrix tuple of G.

Consider when Vis a coordinate subspace, e.g, V = span{es, e3}.

o In this case, Vis treated as a vertex subset, so dim (V) corresponds to | W].
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Some explanation

@ The dimension expansion of B is defined as

. . dim(V+ B(V)) — dim(V)
w(B):= min dim(V) ‘

1<dim(V)<2
Let B¢ == (E;; : {4,j} € E(G)) be the graphical matrix tuple of G.

Consider when Vis a coordinate subspace, e.g, V = span{es, e3}.

o In this case, Vis treated as a vertex subset, so dim (V) corresponds to | W].
o Note that E; je; = e;, and E; jep, = 0 when & # j.
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Some explanation

@ The dimension expansion of B is defined as

. . dim(V+ B(V)) — dim(V)
w(B):= min dim(V) ‘

1<dim(V)< 2
Let B¢ == (E;; : {4,j} € E(G)) be the graphical matrix tuple of G.
Consider when Vis a coordinate subspace, e.g, V = span{es, e3}.

o In this case, Vis treated as a vertex subset, so dim (V) corresponds to | W].
o Note that E; je; = e;, and E; jep, = 0 when & # j.
o In this case, dim(V+ B(V)) — dim(V) is doing the same as |Oout( W)|.
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Some explanation

@ The dimension expansion of B is defined as

. . dim(V+ B(V)) — dim(V)
w(B):= min dim(V) ‘

1<dim(V)< 2
Let B¢ == (E;; : {4,j} € E(G)) be the graphical matrix tuple of G.
Consider when Vis a coordinate subspace, e.g, V = span{es, e3}.

o In this case, Vis treated as a vertex subset, so dim (V) corresponds to | W].
o Note that E; je; = e;, and E; jep, = 0 when & # j.
o In this case, dim(V+ B(V)) — dim(V) is doing the same as |Oout( W)|.

Theorem (Li-Qiao—Wigderson—-Wigderson—Zhang’2022)

For any undirected graph G, u(G) = n(Bg).
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Some explanation

@ The dimension expansion of B is defined as

. . dim(V+ B(V)) — dim(V)
w(B):= min dim(V) ‘

1<dim(V)< 2
Let B¢ == (E;; : {4,j} € E(G)) be the graphical matrix tuple of G.
Consider when Vis a coordinate subspace, e.g, V = span{es, e3}.

o In this case, Vis treated as a vertex subset, so dim (V) corresponds to | W].
o Note that E; je; = e;, and E; jep, = 0 when & # j.
o In this case, dim(V+ B(V)) — dim(V) is doing the same as |Oout( W)|.

Theorem (Li-Qiao—Wigderson—-Wigderson—Zhang’2022)

For any undirected graph G, u(G) = n(Bg).

e The proof is based on the ideas of [Dvir—Shpilka’11, Dvir-Wigderson’10].
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Our further work

o In the classical setting, all three expansion are equivalent.

UTS:Q 58


https://qsi.uts.edu.au/

Our further work

o In the classical setting, all three expansion are equivalent.

e However, this is not the case for linear-algebraic expanders.
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Our further work

o In the classical setting, all three expansion are equivalent.

e However, this is not the case for linear-algebraic expanders.

Theorem (Li-Qiao—Wigderson—-Wigderson—Zhang’2022)

Constant-degree quantum expanders are dimension expanders; there are dimen-
sion expanders which are not quantum expanders.
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@ Basic correspondence: for any bipartite/directed graph G,

G satisfies P = S satisfies @

for a graph-theoretic property P and a linear-algebraic property Q.
e Inherited correspondence: for any bipartite/directed graph H,

Max. size of G C H satisfying P = Max. dim of S < Sy satisfying @

e From a graph G, we can construct not only Sg but also 4, B¢, and even
in other context, then establish the connection between their properties.
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Question and Answer

Thank you so much!
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