
 

 

Connections between graphs and matrix spaces

Speaker: Chuanqi Zhang

Centre for Quantum Software and Information
University of Technology Sydney

Joint work with Yinan Li, Youming Qiao, Avi Wigderson, and Yuval
Wigderson

QuSoft Seminar, Jan 2023

ArXiv:2206.04815, to appear in Israel Journal of Mathematics

https://qsi.uts.edu.au/
https://arxiv.org/pdf/2206.04815.pdf


 

 

Outline

A quick introduction about matrix spaces.
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A general framework of such connections.
Another example: Acyclicity ⇐⇒ Nilpotency
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What is a matrix space?

A matrix space is a linear space spanned by matrices.
Let M(n,F) denote the linear space of n× n matrices over a field F. Then
a linear subspace S ≤ M(n,F) is called a matrix space.
Specify a basis M1, . . . ,Md for S.
S is the set of all linear combinations of M1, . . . ,Md.
S corresponds to the symbolic matrix x1M1 + · · · + xdMd, whose entries
are linear forms in the variables x1, . . . , xd, e.g.,

x1

(
3 2
−1 0

)
+ x2

(
1 0
2 −2

)
=

(
3x1 + x2 2x1
2x2 − x1 −2x2

)
.

S corresponds to a superoperator Φ(X) =
∑d

i=1 MiXM∗
i .

https://qsi.uts.edu.au/


 

 

What is a matrix space?

A matrix space is a linear space spanned by matrices.
Let M(n,F) denote the linear space of n× n matrices over a field F. Then
a linear subspace S ≤ M(n,F) is called a matrix space.
Specify a basis M1, . . . ,Md for S.
S is the set of all linear combinations of M1, . . . ,Md.
S corresponds to the symbolic matrix x1M1 + · · · + xdMd, whose entries
are linear forms in the variables x1, . . . , xd, e.g.,

x1

(
3 2
−1 0

)
+ x2

(
1 0
2 −2

)
=

(
3x1 + x2 2x1
2x2 − x1 −2x2

)
.

S corresponds to a superoperator Φ(X) =
∑d

i=1 MiXM∗
i .

https://qsi.uts.edu.au/


 

 

What is a matrix space?

A matrix space is a linear space spanned by matrices.
Let M(n,F) denote the linear space of n× n matrices over a field F. Then
a linear subspace S ≤ M(n,F) is called a matrix space.
Specify a basis M1, . . . ,Md for S.
S is the set of all linear combinations of M1, . . . ,Md.
S corresponds to the symbolic matrix x1M1 + · · · + xdMd, whose entries
are linear forms in the variables x1, . . . , xd, e.g.,

x1

(
3 2
−1 0

)
+ x2

(
1 0
2 −2

)
=

(
3x1 + x2 2x1
2x2 − x1 −2x2

)
.

S corresponds to a superoperator Φ(X) =
∑d

i=1 MiXM∗
i .

https://qsi.uts.edu.au/


 

 

What is a matrix space?

A matrix space is a linear space spanned by matrices.
Let M(n,F) denote the linear space of n× n matrices over a field F. Then
a linear subspace S ≤ M(n,F) is called a matrix space.
Specify a basis M1, . . . ,Md for S.
S is the set of all linear combinations of M1, . . . ,Md.
S corresponds to the symbolic matrix x1M1 + · · · + xdMd, whose entries
are linear forms in the variables x1, . . . , xd, e.g.,

x1

(
3 2
−1 0

)
+ x2

(
1 0
2 −2

)
=

(
3x1 + x2 2x1
2x2 − x1 −2x2

)
.

S corresponds to a superoperator Φ(X) =
∑d

i=1 MiXM∗
i .

https://qsi.uts.edu.au/


 

 

What is a matrix space?

A matrix space is a linear space spanned by matrices.
Let M(n,F) denote the linear space of n× n matrices over a field F. Then
a linear subspace S ≤ M(n,F) is called a matrix space.
Specify a basis M1, . . . ,Md for S.
S is the set of all linear combinations of M1, . . . ,Md.
S corresponds to the symbolic matrix x1M1 + · · · + xdMd, whose entries
are linear forms in the variables x1, . . . , xd, e.g.,

x1

(
3 2
−1 0

)
+ x2

(
1 0
2 −2

)
=

(
3x1 + x2 2x1
2x2 − x1 −2x2

)
.

S corresponds to a superoperator Φ(X) =
∑d

i=1 MiXM∗
i .

https://qsi.uts.edu.au/


 

 

What is a matrix space?

A matrix space is a linear space spanned by matrices.
Let M(n,F) denote the linear space of n× n matrices over a field F. Then
a linear subspace S ≤ M(n,F) is called a matrix space.
Specify a basis M1, . . . ,Md for S.
S is the set of all linear combinations of M1, . . . ,Md.
S corresponds to the symbolic matrix x1M1 + · · · + xdMd, whose entries
are linear forms in the variables x1, . . . , xd, e.g.,

x1

(
3 2
−1 0

)
+ x2

(
1 0
2 −2

)
=

(
3x1 + x2 2x1
2x2 − x1 −2x2

)
.

S corresponds to a superoperator Φ(X) =
∑d

i=1 MiXM∗
i .

https://qsi.uts.edu.au/


 

 

What is a matrix space?

A matrix space is a linear space spanned by matrices.
Let M(n,F) denote the linear space of n× n matrices over a field F. Then
a linear subspace S ≤ M(n,F) is called a matrix space.
Specify a basis M1, . . . ,Md for S.
S is the set of all linear combinations of M1, . . . ,Md.
S corresponds to the symbolic matrix x1M1 + · · · + xdMd, whose entries
are linear forms in the variables x1, . . . , xd, e.g.,

x1

(
3 2
−1 0

)
+ x2

(
1 0
2 −2

)
=

(
3x1 + x2 2x1
2x2 − x1 −2x2

)
.

S corresponds to a superoperator Φ(X) =
∑d

i=1 MiXM∗
i .

https://qsi.uts.edu.au/


 

 

From graphs to matrix spaces

For n ∈ N, [n] := {1, 2, . . . , n}.
For (i, j) ∈ [n]× [n], let Ei,j be the elementary matrix in M(n,F) where the
(i, j)th entry is 1, and the remaining entries are 0. For example,

E2,3 ∈ M(3,F) :=

0 0 0
0 0 1
0 0 0

 .

For a bipartite graph G = ([n] ∪ [n],E) or a directed graph G = ([n],E),
the adjacency matrix is

AG :=
∑

(i,j)∈E

Ei,j.

The graphical matrix space (over F) corresponding to G is

SG := span{Ei,j | (i, j) ∈ E}.

https://qsi.uts.edu.au/
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Our starting point

Bipartite Graph G Graphical Matrix Space SG

3 3

2 2

1 1  0 x1 0
0 0 x2
x3 0 x4



Theorem (Tutte’1947, Edmonds’1967, Lovász’1979)
G has a perfect matching iff SG has some invertible matrices.

Proof sketch.
(⇒) Take the matrix supporting on a perfect matching. This would yield an
invertible matrix.
(⇐) Take the symbolic matrix of SG. Existing invertible matrices implies the
determinant polynomial

∑
σ sgn(σ)

∏n
i=1 xi,σi ̸≡ 0 and thereby

∏n
i=1 xi,σi ̸≡ 0

for some σ. Then the edge set {(i, σi) : i ∈ [n]} gives a perfect matching.
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Further observation

Fact (about perfect matching)
If a bipartite graph G = ([n]× [n],E) doesn’t contain any perfect matching, then
|E| ≤ n(n − 1).

Problem
If S ≤ M(n,F) doesn’t contain any invertible matrix, how large can S be?

dim(S) = n(n − 1) is possible by this example,
x1,1 x1,2 . . . x1,n

...
... . . . ...

xn−1,1 xn−1,2 . . . xn−1,n
0 0 . . . 0



Theorem (Dieudonné’1948, Flanders’1962, Meshulam’1985)
If S ≤ M(n,F) doesn’t contain any invertible matrix, then dimS ≤ n(n − 1).

https://qsi.uts.edu.au/
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Correspondences between matrix spaces and graphs

G has no perfect matching ⇐⇒ SG has no invertible matrix
We call it a basic correspondence between G and SG.

Max. size of such G ⊆ Kn,n = Max. dim of such
Note that S doesn’t have to be graphical.

Max. size of such G ⊆ H Max. dim of such S ≤ SH

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang’2022)
For any bipartite graph H, the maximum size over all G ⊆ H with no perfect
matching = the maximum dim over all S ≤ SH with no invertible matrix.

This theorem generalizes Dieudonné’s theorem.
A combinatorial “explanation” of an algebraic property!
We call it an inherited correspondence.
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A general framework

A basic correspondence is a result of the form: for any graph G,

PPPPPPPP G satisfies P ⇐⇒ SG satisfies QQQQQQQQQ

for a graph-theoretic property P and a linear-algebraic property Q.
An inherited correspondence generalizes this to: for any graph H,

Max. size of G ⊆ H satisfying P = Max. dim of S ≤ SH satisfying Q

The basic correspondence immediately implies the ≤ result.
————————————————————————————————–
G has no matching of size r ⇐⇒ Every matrix in SG has rank < r

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang’2022)
For any bipartite graph H, the max. size over all G ⊆ H = the max. dim over
all S ≤ SH .

The proof idea of ≥ is based on Meshulam’s proof [Mes85] of Dieudonné’s
theorem.

https://qsi.uts.edu.au/
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Connection between acyclicity and nilpotency

A graph is acyclic if it has no cycles.
A matrix B is nilpotent, if Bk = 0 for some k ∈ N.
A directed graph G is acyclic iff its adjacency matrix AG is nilpotent.
Note that this doesn’t hold over the field of order 2. For example,(

1 1
1 1

)(
1 1
1 1

)
=

(
0 0
0 0

)

A matrix space S ≤ M(n,F) is nil, if any B ∈ S is nilpotent.
Another basic correspondence: a directed graph G is acyclic iff its graphical
matrix space SG is nil.
This holds over any field.
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Connection between acyclicity and nilpotency

Fact (about directed acyclic graph)
If a directed graph G = ([n],E) doesn’t contain any cycles, then |E| ≤

(n
2
)
.

Problem
If S ≤ M(n,F) is nil, how large can S be?

dim(S) =
(n

2
)

is possible by this example:

0 x1,1 · · · x1,n−2 x1,n−1

0 0 x2,1 · · · x2,n−2
...

...
. . . . . .

...

0 0 0
. . . xn−1,1

0 0 0 0 0


.

Theorem (Gerstenhaber’1958, Serežkin’1985)
If S ≤ M(n,F) is nil, then dimS ≤

(n
2
)
.
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Connection between acyclicity and nilpotency

A basic correspondence: for any directed graph G,
PPPPPPPPPPPPG is acyclic ⇐⇒ SG is nilPPPPPPPPPPPP.
An inherited correspondence: for any directed graph H,
Max. size of G ⊆ H being acyclic Max. dim of S ≤ SH being nil

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang’2022)
For any directed graph H, the maximum size over all acyclic subgraph G ⊆ H
= the maximum dim over all nil subspace S ≤ SH.

This generalizes Gerstenhaber’s theorem.
We adapt de Seguins Pazzis’s proof [dSP13] of Gerstenhaber’s theorem to
prove the ≥ direction.
Corollary: Given S ≤ M(n,F), it is NP-hard to determine the maximum
dimension of nil subspace of S.
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Summary

Basic correspondence: for any bipartite/directed graph G,

PPPPPPPP G satisfies P ⇐⇒ SG satisfies QQQQQQQQQ

for a graph-theoretic property P and a linear-algebraic property Q.
Inherited correspondence: for any bipartite/directed graph H,

Max. size of G ⊆ H satisfying P = Max. dim of S ≤ SH satisfying Q

We also have other results: strong-connectivity and irreducibility, isomor-
phism and conjugacy/congruence...
Such connections are not only found for matrix spaces!
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Previous works on graphical quantum channels

Embed a d-regular graph G to a quantum channel ΦG : M(n,C) → M(n,C)
[Bannink–Brïet–Labib–Maassen’2020].
For every X ∈ M(n,C), the graphical quantum channel of G is defined as

ΦG(X) :=
1
d

∑
(i,j)∈E

Ei,jXE∗
i,j.

Theorem (Bannink–Brïet–Labib–Maassen’2020, Proposition 3.7)
For any d-regular graph G, the spectral expansion of G equals the spectral
expansion of ΦG.

Φ is irreducibly covariant, if there exists a compact group Γ and a contin-
uous irreducible unitary representation U : Γ → U(n) such that for any
g ∈ Γ and X ∈ M(n,C), we have Φ(U(g)XU(g)∗) = U(g)Φ(X)U(g)∗.

Theorem (Bannink–Brïet–Labib–Maassen’2020, Proposition 3.8)
A d-regular graph G is vertex-transitive iff ΦG is irreducibly covariant.
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Vertex-transitivity

Let G be a directed graph. Let Aut(G) be the automorphism group of G.
Recall that G is vertex-transitive, if Aut(G) is a transitive group.
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Conjugacy/congruence irreducibility

Let matrix group G ≤ GL(n,F) and U ≤ Fn.
G is reducible if there exists a non-zero and proper U such that for any
A ∈ G, A(U) ≤ U. Otherwise, we call G irreducible.
In this case, U is called an invariant subspace.

Let matrix space S ≤ M(n,F).
Define Conj(S) := {T ∈ GL(n,F) | TST−1 = S} ≤ GL(n,F). We say that
S is conjugacy irreducible, if Conj(S) is irreducible as a matrix group.
Define Cong(S) := {T ∈ GL(n,F) | TSTt = S} ≤ GL(n,F). We say that
S is congruence irreducible, if Cong(S) is irreducible as a matrix group.
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Implication to quantum information

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang’2022)
Let G be a d-regular graph, and SG and ΦG be the graphical matrix space
and quantum channel associated with G, respectively. Then the following are
equivalent:

1 G is vertex-transitive.
2 ΦG is irreducibly covariant.
3 Conj(SG) is irreducible.
4 Cong(SG) is irreducible.
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Our further work

Theorem (Bannink–Brïet–Labib–Maassen’2020, Proposition 3.7)
For any d-regular graph G, the spectral expansion of G equals the spectral
expansion of ΦG.

Inspired by this work in [BBLM20], we also investigated the linear-algebraic
expanders generalized from graphs in the follow-up work1.

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang’2022)
For any undirected graph G, the vertex expansion of G equals the dimension
expansion of BG.

1ArXiv:2212.13154
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Some explanation

Let G be an undirected graph.
The vertex expansion of G is defined as

µ(G) := min
W⊆[n]

1≤|W|≤ n
2

|∂out(W)|
|W|

,

where ∂out(W) := {j ∈ [n] \ W : ∃ i ∈ W, s.t. {i, j} ∈ E}.
Let B := (B1, . . . ,Bm) ∈ M(n,F)m be a matrix tuple.
Define B(V) := ⟨∪i∈[m]Bi(V)⟩ for V ≤ Fn.
The dimension expansion of B is defined as

µ(B) := min
V≤Fn

1≤dim(V)≤ n
2

dim(V + B(V))− dim(V)

dim(V)
.
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Some explanation

The dimension expansion of B is defined as

µ(B) := min
V≤Fn

1≤dim(V)≤ n
2

dim(V + B(V))− dim(V)

dim(V)
.

Let BG := (Ei,j : {i, j} ∈ E(G)) be the graphical matrix tuple of G.
Consider when V is a coordinate subspace, e.g, V = span{e2, e3}.
In this case, V is treated as a vertex subset, so dim(V) corresponds to |W|.
Note that Ei,jej = ei, and Ei,jek = 0 when k ̸= j.
In this case, dim(V + B(V))− dim(V) is doing the same as |∂out(W)|.

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang’2022)
For any undirected graph G, µ(G) = µ(BG).

The proof is based on the ideas of [Dvir–Shpilka’11, Dvir–Wigderson’10].
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Our further work

In the classical setting, all three expansion are equivalent.
However, this is not the case for linear-algebraic expanders.

Theorem (Li–Qiao–Wigderson–Wigderson–Zhang’2022)
Constant-degree quantum expanders are dimension expanders; there are dimen-
sion expanders which are not quantum expanders.
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Summary

Basic correspondence: for any bipartite/directed graph G,

PPPPPPPP G satisfies P ⇐⇒ SG satisfies QQQQQQQQQ

for a graph-theoretic property P and a linear-algebraic property Q.
Inherited correspondence: for any bipartite/directed graph H,

Max. size of G ⊆ H satisfying P = Max. dim of S ≤ SH satisfying Q

From a graph G, we can construct not only SG but also ΦG, BG, and even
in other context, then establish the connection between their properties.
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Question and Answer

Thank you so much!
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