41080 Theory of Computing Science Week 2 Tutorial Class

Chuanqi Zhang

Centre for Quantum Software and Information University of Technology Sydney

 $15\mathrm{th}$ August, 2024

• **Review**: languages and operations on them

• Keynote: DFAs and their relation with languages

• **Tutorial**: how to do the product construction of two DFAs

 \bullet ${\bf Review}:$ languages and operations on them

• Keynote: DFAs and their relation with languages

• **Tutorial**: how to do the product construction of two DFAs

 \bullet $\mathbf{Review}:$ languages and operations on them

• Keynote: DFAs and their relation with languages

• Tutorial: how to do the product construction of two DFAs

• Σ : an alphabet set;

- Σ^n : the set of all length-*n* strings over Σ ;
- Σ^* : the set of ALL strings over Σ .

Definition (Language)

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

- Σ : an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- Σ^* : the set of ALL strings over Σ .

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

- Σ : an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- Σ^* : the set of ALL strings over Σ .

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

- Σ : an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- Σ^* : the set of ALL strings over Σ . Formally, $\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$.

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

- Σ : an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- Σ^* : the set of ALL strings over Σ . Formally, $\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$.

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

- Σ : an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- Σ^* : the set of ALL strings over Σ . Formally, $\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$.

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Let's have a try! Is the string '01' in language L?

- Σ : an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- Σ^* : the set of ALL strings over Σ . Formally, $\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$.

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Let's have a try! Is the string '010' in language L?

- Σ : an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- Σ^* : the set of ALL strings over Σ . Formally, $\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$.

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Let's have a try! Is the string '101' in language L?

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$

• Kleene star:
$$L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$$

the empty string

$$L_1^n = \underbrace{L_1 \circ L_1 \circ \dots \circ L_1}_{n \text{ times}} \longrightarrow L_1^n = \bigcup_{n \in \mathbb{N}} L_1^n$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$

• Kleene star:
$$L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$$

he empty string

$$L_1^n = \underbrace{L_1 \circ L_1 \circ \dots \circ L_1}_{n \text{ times}} \longrightarrow L_1^n = \bigcup_{n \in \mathbb{N}} L_1^n$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$
- Kleene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$

he empty string

$$L_1^n = \underbrace{L_1 \circ L_1 \circ \dots \circ L_1}_{n \text{ times}} \longrightarrow L_1^n = \bigcup_{n \in \mathbb{N}} L_1^n$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$

• Kleene star:
$$L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$$

he empty string

$$L_1^n = \underbrace{L_1 \circ L_1 \circ \dots \circ L_1}_{n \text{ times}} \longrightarrow L_1^n = \bigcup_{n \in \mathbb{N}} L_1^n$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2\}.$

• Kleene star:
$$L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$$

he empty string

$$L_1^n = \underbrace{L_1 \circ L_1 \circ \dots \circ L_1}_{n \text{ times}} \longrightarrow L_1^n = \bigcup_{n \in \mathbb{N}} L_1^n$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$

• Kleene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$

the empty string

$$L_1^n = \underbrace{L_1 \circ L_1 \circ \dots \circ L_1}_{n \text{ times}} \longrightarrow L_1^* = \bigcup_{n \in \mathbb{N}} L_1^*$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$
- Kleene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$

$$L_1^n = \underbrace{L_1 \circ L_1 \circ \cdots \circ L_1}_{n \text{ times}} \longrightarrow L_1^* = \bigcup_{n \in \mathbb{N}} L_1^*$$

the empty string

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$
- Kleene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$ the empty string
- A better way to understand the Kleene star operation:

$$L_1^n = \underbrace{L_1 \circ L_1 \circ \dots \circ L_1}_{n \text{ times}} \longrightarrow L_1^n = \bigcup_{n \in \mathbb{N}} L_1^n$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$

• Kleene star:
$$L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$$

the empty string

$$L_1^n = \underbrace{L_1 \circ L_1 \circ \cdots \circ L_1}_{n \text{ times}} \longrightarrow L_1^* = \bigcup_{n \in \mathbb{N}} L_1^r$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2 \}.$
- Intersection: $L_1 \cap L_2 = \{ w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2 \}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma\}.$
- Concatenation: $L_1 \circ L_2 = \{ w_1 w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2 \}.$

• Kleene star:
$$L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$$

the empty string

$$L_1^n = \underbrace{L_1 \circ L_1 \circ \dots \circ L_1}_{n \text{ times}} \longrightarrow L_1^* = \bigcup_{n \in \mathbb{N}} L_1^n$$

Definition (DFA)

A deterministic finite automaton (DFA) can be represented by diagrams:

- Q: a set of states;
- **2** Σ : an alphabet set;
- $q_0 \in Q$: the start state;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times \Sigma \to Q$: a transition function.

Definition (DFA)

A deterministic finite automaton (DFA) is a five tuple $(Q, \Sigma, q_0, F, \delta)$:

- Q: a set of states;
- **2** Σ : an alphabet set;
- $q_0 \in Q$: the start state;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times \Sigma \to Q$: a transition function.

Definition (DFA)

A deterministic finite automaton (DFA) is a five tuple $(Q, \Sigma, q_0, F, \delta)$:

- **2** Σ : an alphabet set;
- $q_0 \in Q$: the start state;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times \Sigma \to Q$: a transition function.

Definition (DFA)

A deterministic finite automaton (DFA) is a five tuple $(Q, \Sigma, q_0, F, \delta)$:

- **2** Σ : an alphabet set;
- $q_0 \in Q$: the start state;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times \Sigma \to Q$: a transition function.

Definition (DFA)

A deterministic finite automaton (DFA) is a five tuple $(Q, \Sigma, q_0, F, \delta)$:

- **2** Σ : an alphabet set;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times \Sigma \to Q$: a transition function.

Definition (DFA)

A deterministic finite automaton (DFA) is a five tuple $(Q, \Sigma, q_0, F, \delta)$:

- **2** Σ : an alphabet set;
- **3** $q_0 \in Q$: the start state;
- $F \subseteq Q$: a set of accept states;
- **(**) $\delta: Q \times \Sigma \to Q$: a transition function.

Definition (DFA)

A deterministic finite automaton (DFA) is a five tuple $(Q, \Sigma, q_0, F, \delta)$:

- **2** Σ : an alphabet set;
- **3** $q_0 \in Q$: the start state;
- $F \subseteq Q$: a set of accept states;
- $\ \, \bullet \ \, \delta:\,Q\times\Sigma\to Q\!\!: \ \, {\rm a \ transition \ function}.$

Definition (DFA)

A deterministic finite automaton (DFA) is a five tuple $(Q, \Sigma, q_0, F, \delta)$:

- **2** Σ : an alphabet set;
- **3** $q_0 \in Q$: the start state;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times \Sigma \to Q$: a transition function, e.g., $\delta(q_0, 1) = q_1$.

From DFA to language

Example (DFA)

Exercise

Write down the language that the above DFA recognises.

Solution: $L = \{ w \in \{0, 1\}^* \mid w \text{ contains even number of } 1s \}.$

From DFA to language

Exercise

Write down the language that the above DFA recognises.

Solution: $L = \{ w \in \{0, 1\}^* \mid w \text{ contains even number of } 1s \}.$

From DFA to language

Exercise

Write down the language that the above DFA recognises.

Solution: $L = \{ w \in \{0, 1\}^* \mid w \text{ contains even number of } 1s \}.$

From language to DFA

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Solution:

From language to DFA

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Solution:

From language to DFA

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Solution:

start
$$\rightarrow q_0$$

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Solution:

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Solution:

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Solution:

Example

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Solution:

Definition (NFA)

A non-deterministic finite automaton (NFA) can be represented by diagrams:

- **(a)** Σ : an alphabet set;
- $Q_0 \subseteq Q$: a set of start states;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function.

Note that 2^Q refers to the set consisting of all subsets of Q.

Definition (NFA)

A non-deterministic finite automaton (NFA) is a five tuple $(Q, \Sigma, Q_0, F, \delta)$:

- **②** Σ : an alphabet set;
- $Q_0 \subseteq Q$: a set of start states;
- $F \subseteq Q$: a set of accept states;
- **5** $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q:$ a transition function.

Note that 2^Q refers to the set consisting of all subsets of Q.

Definition (NFA)

A non-deterministic finite automaton (NFA) is a five tuple $(Q, \Sigma, Q_0, F, \delta)$:

- Q: a set of states;
- **2** Σ : an alphabet set;
- $Q_0 \subseteq Q$: a set of start states;
- $F \subseteq Q$: a set of accept states;
- **③** δ: $Q \times (\Sigma \cup {\varepsilon}) \rightarrow 2^Q$: a transition function.

Note that 2^Q refers to the set consisting of all subsets of Q.

Definition (NFA)

- A non-deterministic finite automaton (NFA) is a five tuple $(Q, \Sigma, Q_0, F, \delta)$:

 - **2** Σ : an alphabet set;
 - $Q_0 \subseteq Q$: a set of start states;
 - $F \subseteq Q$: a set of accept states;
 - $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function.

Note that 2^Q refers to the set consisting of all subsets of Q.

Definition (NFA)

- A non-deterministic finite automaton (NFA) is a five tuple $(Q, \Sigma, Q_0, F, \delta)$:

 - **2** Σ : an alphabet set;
 - $Q_0 \subseteq Q$: a set of start states;
 - $F \subseteq Q$: a set of accept states;
 - $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function.

Note that 2^Q refers to the set consisting of all subsets of Q.

Definition (NFA)

- A non-deterministic finite automaton (NFA) is a five tuple $(Q, \Sigma, Q_0, F, \delta)$:

 - **2** Σ : an alphabet set;
 - **3** $Q_0 \subseteq Q$: a set of start states;
 - $F \subseteq Q$: a set of accept states;
 - $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function.

Note that 2^Q refers to the set consisting of all subsets of Q.

Definition (NFA)

- A non-deterministic finite automaton (NFA) is a five tuple $(Q, \Sigma, Q_0, F, \delta)$:

 - **2** Σ : an alphabet set;
 - **3** $Q_0 \subseteq Q$: a set of start states;
 - $F \subseteq Q$: a set of accept states;
 - $\bullet \ \delta: \ Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q: \text{ a transition function.}$

Note that 2^Q refers to the set consisting of all subsets of Q.

Definition (NFA)

A non-deterministic finite automaton (NFA) is a five tuple $(Q, \Sigma, Q_0, F, \delta)$:

- **2** Σ : an alphabet set;
- **3** $Q_0 \subseteq Q$: a set of start states;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function.

Note that 2^Q refers to the set consisting of all subsets of Q.

Definition (NFA)

A non-deterministic finite automaton (NFA) is a five tuple $(Q, \Sigma, Q_0, F, \delta)$:

- **2** Σ : an alphabet set;
- **3** $Q_0 \subseteq Q$: a set of start states;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q:$ a transition function, e.g., $\delta(q_0, 1) = \{q_0, q_1\}.$

Note that 2^Q refers to the set consisting of all subsets of Q.

Definition (NFA)

A non-deterministic finite automaton (NFA) is a five tuple $(Q, \Sigma, Q_0, F, \delta)$:

- **2** Σ : an alphabet set;
- **3** $Q_0 \subseteq Q$: a set of start states;
- $F \subseteq Q$: a set of accept states;
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function.

Note that 2^Q refers to the set consisting of all subsets of Q.

From NFA to language

Example (NFA)

Exercise

Write down the language that the above NFA recognises.

Solution: $L = \{w \in \{0,1\}^* \mid w \text{ contains } 11 \text{ or } 101 \text{ as substrings.}\}$.

From NFA to language

Example (NFA)

Exercise

Write down the language that the above NFA recognises.

Solution: $L = \{w \in \{0, 1\}^* \mid w \text{ contains } 11 \text{ or } 101 \text{ as substrings.}\}$.

From NFA to language

Exercise

Write down the language that the above NFA recognises.

Solution: $L = \{w \in \{0,1\}^* \mid w \text{ contains } 11 \text{ or } 101 \text{ as substrings.}\}.$

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Problem

Design an NFA that recognises the above language.

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Problem

Design an NFA that recognises the above language.

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Problem

Design an NFA that recognises the above language.

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Problem

Design an NFA that recognises the above language.

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Problem

Design an NFA that recognises the above language.

Let $\Sigma = \{0,1\}$ and $L = \{w \in \{0,1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Problem

Design an NFA that recognises the above language.

Definition (Regular languages)

L is a regular language if there exists a DFA that recognises L.

Proposition (Closure properties)

If L_1 and L_2 are both regular languages, then

- \bigcirc $L_1 \cup L_2$ is a regular language;
- \bigcirc $L_1 \cap L_2$ is a regular language.

Definition (Regular languages)

L is a regular language if there exists a DFA that recognises L.

Proposition (Closure properties)

If L_1 and L_2 are both regular languages, then

- $L_1 \cup L_2$ is a regular language;
- **2** $L_1 \cap L_2$ is a regular language.

- the state set $R = P \times Q$;
- (a) the start state $r_0 = (p_0, q_0);$
- the accept state set $G = \{(p, q) \mid p \in E \text{ or } q \in F\}$.
- the transition function $\gamma : (P \times Q) \times \Sigma \to (P \times Q)$ given by $\gamma((p, q), a)) = (\alpha(p, a), \beta(q, a)).$

- the state set $R = P \times Q$;
- 2 the start state $r_0 = (p_0, q_0);$
- (a) the accept state set $G = \{(p, q) \mid p \in E \text{ or } q \in F\}$.
- the transition function $\gamma : (P \times Q) \times \Sigma \to (P \times Q)$ given by $\gamma((p, q), a)) = (\alpha(p, a), \beta(q, a)).$

- the state set $R = P \times Q$;
- 2 the start state $r_0 = (p_0, q_0)$;
- If the accept state set $G = \{(p, q) \mid p \in E \text{ or } q \in F\}.$
- the transition function $\gamma : (P \times Q) \times \Sigma \to (P \times Q)$ given by $\gamma((p, q), a)) = (\alpha(p, a), \beta(q, a)).$

- the state set $R = P \times Q$;
- **2** the start state $r_0 = (p_0, q_0);$
- the accept state set $G = \{(p, q) \mid p \in E \text{ or } q \in F\}.$
 - the transition function $\gamma : (P \times Q) \times \Sigma \to (P \times Q)$ given by $\gamma((p, q), a)) = (\alpha(p, a), \beta(q, a)).$

- the state set $R = P \times Q$;
- **2** the start state $r_0 = (p_0, q_0);$
- the accept state set $G = \{(p, q) \mid p \in E \text{ or } q \in F\}.$
- the transition function $\gamma : (P \times Q) \times \Sigma \to (P \times Q)$ given by $\gamma((p, q), a)) = (\alpha(p, a), \beta(q, a)).$

- the state set $R = P \times Q$;
- **2** the start state $r_0 = (p_0, q_0);$
- the accept state set $G = \{(p, q) \mid p \in E \text{ and } q \in F\}.$
- the transition function $\gamma : (P \times Q) \times \Sigma \to (P \times Q)$ given by $\gamma((p, q), a)) = (\alpha(p, a), \beta(q, a)).$

Tutorial: product construction

Construct a DFA for $L_1 \cup L_2$ (recognised by the given two DFAs, respectively).

Construct a DFA for $L_1 \cup L_2$ (recognised by the given two DFAs, respectively).

Construct a DFA for $L_1 \cup L_2$ (recognised by the given two DFAs, respectively).

Construct a DFA for $L_1 \cup L_2$ (recognised by the given two DFAs, respectively).

Construct a DFA for $L_1 \cup L_2$ (recognised by the given two DFAs, respectively).

Construct a DFA for $L_1 \cap L_2$ (recognised by the given two DFAs, respectively).

