41080 Theory of Computing Science Week 2 Tutorial Class

Chuanqi Zhang

Centre for Quantum Software and Information University of Technology Sydney

15th August, 2024

Outline

- **Review**: languages and operations on them
- **Keynote**: DFAs and their relation with languages
- **Tutorial**: how to do the product construction of two DFAs

Outline

- **Review**: languages and operations on them
- **Keynote**: DFAs and their relation with languages
- **Tutorial**: how to do the product construction of two DFAs

Outline

- **Review**: languages and operations on them
- **Keynote**: DFAs and their relation with languages
- **Tutorial**: how to do the product construction of two DFAs

- \bullet Σ: an alphabet set;
-
-

- \bullet Σ: an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
-

- \bullet Σ: an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- Σ *∗* : the set of ALL strings over Σ.

- \bullet Σ: an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- $Σ$ ^{*∗*}: the set of ALL strings over Σ. Formally, $Σ$ ^{*∗*} = *∪n*∈NΣ^{*n*}.

- \bullet Σ: an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- $Σ$ ^{*∗*}: the set of ALL strings over Σ. Formally, $Σ$ ^{*∗*} = *∪n*∈NΣ^{*n*}.

Definition (Language)

L is a language if $L \subseteq \Sigma^*$ for some Σ .

- \bullet Σ: an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- $Σ$ ^{*∗*}: the set of ALL strings over Σ. Formally, $Σ$ ^{*∗*} = *∪n*∈NΣ^{*n*}.

Definition (Language)

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Let's have a try! Is the string '01' in language *L*?

- \bullet Σ: an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- $Σ$ ^{*∗*}: the set of ALL strings over Σ. Formally, $Σ$ ^{*∗*} = *∪n*∈NΣ^{*n*}.

Definition (Language)

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Let's have a try! Is the string '010' in language *L*?

- \bullet Σ: an alphabet set;
- Σ^n : the set of all length-*n* strings over Σ ;
- $Σ$ ^{*∗*}: the set of ALL strings over Σ. Formally, $Σ$ ^{*∗*} = *∪n*∈NΣ^{*n*}.

Definition (Language)

L is a language if $L \subseteq \Sigma^*$ for some Σ .

Example (Language)

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Let's have a try! Is the string '101' in language *L*?

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

-
-
-
-
-
-

$$
L_1^n = \underbrace{L_1 \circ L_1 \circ \cdots \circ L_1}_{n \text{ times}} \quad \longrightarrow \quad L_1^* = \bigcup_{n \in \mathbb{N}} L_1^n
$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2\}.$
-
-
-
-
-

$$
L_1^n = \underbrace{L_1 \circ L_1 \circ \cdots \circ L_1}_{n \text{ times}} \qquad \longrightarrow \qquad L_1^n = \bigcup_{n \in \mathbb{N}} L_1^n
$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2\}.$
- Intersection: $L_1 \cap L_2 = \{w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2\}.$
-
-
-
-

$$
L_1^n = \underbrace{L_1 \circ L_1 \circ \cdots \circ L_1}_{n \text{ times}} \quad \longrightarrow \quad L_1^n = \bigcup_{n \in \mathbb{N}} L_1^n
$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2\}.$
- Intersection: $L_1 \cap L_2 = \{w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2\}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
-
-
-

$$
L_1^n = \underbrace{L_1 \circ L_1 \circ \cdots \circ L_1}_{n \text{ times}} \quad \longrightarrow \quad L_1^* = \bigcup_{n \in \mathbb{N}} L_1^n
$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2\}.$
- Intersection: $L_1 \cap L_2 = \{w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2\}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma \}.$
-
-

$$
L_1^n = \underbrace{L_1 \circ L_1 \circ \cdots \circ L_1}_{n \text{ times}} \quad \longrightarrow \quad L_1^* = \bigcup_{n \in \mathbb{N}} L_1^n
$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2\}.$
- Intersection: $L_1 \cap L_2 = \{w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2\}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma \}.$
- Concatenation: $L_1 \circ L_2 = \{w_1w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2\}.$
-

$$
L_1^n = \underbrace{L_1 \circ L_1 \circ \cdots \circ L_1}_{n \text{ times}} \qquad \longrightarrow \qquad L_1^n = \bigcup_{n \in \mathbb{N}} L_1^n
$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2\}.$
- Intersection: $L_1 \cap L_2 = \{w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2\}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma \}.$
- Concatenation: $L_1 \circ L_2 = \{w_1w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2\}.$
- K leene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$

$$
L_1^n = \underbrace{L_1 \circ L_1 \circ \cdots \circ L_1}_{n \text{ times}} \longrightarrow L_1^* = \bigcup_{n \in \mathbb{N}} L_1^n
$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2\}.$
- Intersection: $L_1 \cap L_2 = \{w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2\}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma \}.$
- Concatenation: $L_1 \circ L_2 = \{w_1w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2\}.$
- K leene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$

the empty string

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2\}.$
- Intersection: $L_1 \cap L_2 = \{w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2\}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma \}.$
- Concatenation: $L_1 \circ L_2 = \{w_1w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2\}.$
- K leene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$

the empty string

$$
L_1^n = \underbrace{L_1 \circ L_1 \circ \cdots \circ L_1}_{n \text{ times}} \longrightarrow L_1^* = \bigcup_{n \in \mathbb{N}} L_1^n
$$

Given two languages $L_1, L_2 \subseteq \Sigma^*$, we can make the following operations:

- Union: $L_1 \cup L_2 = \{w \in \Sigma^* : w \in L_1 \text{ or } w \in L_2\}.$
- Intersection: $L_1 \cap L_2 = \{w \in \Sigma^* : w \in L_1 \text{ and } w \in L_2\}.$
- Complement: $\neg L_1 = \{ w \in \Sigma^* : w \notin L_1 \}.$
- Reverse: $L_1^R = \{a_k \dots a_1 \in \Sigma^* : a_1 \dots a_k \in L_1 \text{ for each } a_i \in \Sigma \}.$
- Concatenation: $L_1 \circ L_2 = \{w_1w_2 \in \Sigma^* : w_1 \in L_1 \text{ and } w_2 \in L_2\}.$
- K leene star: $L_1^* = \{w_1 \dots w_k \in \Sigma^* : w_i \in L_1\} \cup \{\varepsilon\}.$

the empty string

$$
L_1^n = \underbrace{L_1 \circ L_1 \circ \cdots \circ L_1}_{n \text{ times}} \longrightarrow L_1^* = \bigcup_{n \in \mathbb{N}} L_1^n
$$

Definition (DFA)

A deterministic finite automaton (DFA) can be represented by diagrams:

-
-
-
-
-

Example (DFA)

Definition (DFA)

-
-
-
-
-

Definition (DFA)

- \bullet *Q*: a set of states;
-
-
-
-

Definition (DFA)

- \bullet *Q*: a set of states;
- \bullet Σ : an alphabet set;
-
-
-

Definition (DFA)

- \bullet *Q*: a set of states;
- \bullet Σ: an alphabet set;
- \bullet *q*₀ \in *Q*: the start state;
-

Definition (DFA)

- \bullet *Q*: a set of states;
- \bullet Σ: an alphabet set;
- \bullet $q_0 \in Q$: the start state;
- \bigcirc *F* \subseteq *Q*: a set of accept states;

Definition (DFA)

A deterministic finite automaton (DFA) is a five tuple $(Q, \Sigma, q_0, F, \delta)$:

1

- \bullet *Q*: a set of states;
- \bullet Σ: an alphabet set;
- \bullet $q_0 \in Q$: the start state;
- \bullet *F* \subseteq *Q*: a set of accept states;
- \bullet $\delta: Q \times \Sigma \rightarrow Q$: a transition function.

Example (DFA) start $\rightarrow (q_0)$ (q_1) 0 1 0

Definition (DFA)

- \bullet *Q*: a set of states;
- \bullet Σ: an alphabet set;
- \bullet *q*₀ \in *Q*: the start state;
- \bigcirc *F* \subseteq *Q*: a set of accept states;
- \bullet $\delta: Q \times \Sigma \to Q$: a transition function, e.g., $\delta(q_0, 1) = q_1$.

From DFA to language

From DFA to language

From DFA to language

Solution: $L = \{w \in \{0, 1\}^* \mid w \text{ contains even number of 1s}\}.$

From language to DFA

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

 \sim

UTS:05I)

From language to DFA

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

From language to DFA

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Solution:

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Solution:

UTS:05I)

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Exercise

Design a DFA that recognises the above language.

Definition (NFA)

A non-deterministic finite automaton (NFA) can be represented by diagrams:

-
-
-
-
-

Definition (NFA)

-
-
-
-
-

Definition (NFA)

- **0** *Q*: a set of states;
-
-
-
-

Definition (NFA)

- \bullet *Q*: a set of states;
- \bullet Σ : an alphabet set;
-
-
-

Definition (NFA)

- \bullet *Q*: a set of states;
- \bullet Σ: an alphabet set;
- \odot $Q_0 \subseteq Q$: a set of start states;
-
-

Definition (NFA)

- \bullet *Q*: a set of states;
- \bullet Σ: an alphabet set;
- \bullet $Q_0 \subseteq Q$: a set of start states;
- \bullet $F \subseteq Q$: a set of accept states;
-

Definition (NFA)

- \bullet *Q*: a set of states;
- \bullet Σ: an alphabet set;
- \odot $Q_0 \subseteq Q$: a set of start states;
- \bigcirc *F* \subseteq *Q*: a set of accept states;
- **3** δ : $Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$: a transition function.

Definition (NFA)

A non-deterministic finite automaton (NFA) is a five tuple $(Q, \Sigma, Q_0, F, \delta)$:

- \bullet *Q*: a set of states;
- \bullet Σ: an alphabet set;
- \odot $Q_0 \subseteq Q$: a set of start states;
- \bullet *F* \subseteq *Q*: a set of accept states;
- **3** δ : $Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$: a transition function.

Note that 2 *^Q* refers to the set consisting of all subsets of *Q*.

Definition (NFA)

A non-deterministic finite automaton (NFA) is a five tuple $(Q, \Sigma, Q_0, F, \delta)$:

- \bullet *Q*: a set of states;
- \bullet Σ: an alphabet set;
- \odot $Q_0 \subseteq Q$: a set of start states;
- \bullet $F \subseteq Q$: a set of accept states;
- δ : $Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$: a transition function, e.g., $\delta(q_0, 1) = \{q_0, q_1\}.$

Note that 2 *^Q* refers to the set consisting of all subsets of *Q*.

Definition (NFA)

A non-deterministic finite automaton (NFA) is a five tuple $(Q, \Sigma, Q_0, F, \delta)$:

- \bullet *Q*: a set of states;
- \bullet Σ: an alphabet set;
- \odot $Q_0 \subseteq Q$: a set of start states;
- \bullet *F* \subseteq *Q*: a set of accept states;
- **3** δ : $Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$: a transition function.

Note that 2 *^Q* refers to the set consisting of all subsets of *Q*.

From NFA to language

From NFA to language

From NFA to language

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Problem

Design an NFA that recognises the above language.

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Problem

Design an NFA that recognises the above language.

Solution:

start \rightarrow *q*₀ \rightarrow

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Problem

Design an NFA that recognises the above language.

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Problem

Design an NFA that recognises the above language.

Example

Let $\Sigma = \{0, 1\}$ and $L = \{w \in \{0, 1\}^* \mid w \text{ starts with } 0 \text{ and ends with } 1\}.$

Problem

Design an NFA that recognises the above language.

What is a regular language?

Definition (Regular languages)

L is a regular language if there exists a DFA that recognises *L*.

What is a regular language?

Definition (Regular languages)

L is a regular language if there exists a DFA that recognises *L*.

Proposition (Closure properties)

*If L*¹ *and L*² *are both regular languages, then*

- ¹ *L*¹ *∪ L*² *is a regular language;*
- 2 $L_1 \cap L_2$ *is a regular language.*

Definition (Product construction of two DFAs)

-
-
-
-

Definition (Product construction of two DFAs)

- \bullet the state set $R = P \times Q$;
-
-
-

Definition (Product construction of two DFAs)

- \bullet the state set $R = P \times Q$;
- 2 the start state $r_0 = (p_0, q_0);$
-
-

Definition (Product construction of two DFAs)

- \bullet the state set $R = P \times Q$;
- 2 the start state $r_0 = (p_0, q_0);$
- \bullet the accept state set $G = \{(p, q) | p \in E \text{ or } q \in F\}.$
-

Definition (Product construction of two DFAs)

- \bullet the state set $R = P \times Q$;
- 2 the start state $r_0 = (p_0, q_0);$
- \bullet the accept state set $G = \{(p, q) | p \in E \text{ or } q \in F\}.$
- **0** the transition function $\gamma : (P \times Q) \times \Sigma \rightarrow (P \times Q)$ given by $\gamma((p, q), a)$) = $(\alpha(p, a), \beta(q, a)).$

Definition (Product construction of two DFAs)

- \bullet the state set $R = P \times Q$;
- 2 the start state $r_0 = (p_0, q_0);$
- \bullet the accept state set $G = \{(p, q) | p \in E \text{ and } q \in F\}.$
- **0** the transition function γ : $(P \times Q) \times \Sigma \rightarrow (P \times Q)$ given by $\gamma((p, q), a)$) = $(\alpha(p, a), \beta(q, a)).$

Tutorial: product construction

Construct a DFA for $L_1 \cup L_2$ (recognised by the given two DFAs, respectively).

start *p*⁰ *p*1 *p*2 1 0*,* 1 0 0*,* 1 start *q*⁰ *q*¹ *q*² 0 1 0 1 0*,* 1
Construct a DFA for $L_1 \cup L_2$ (recognised by the given two DFAs, respectively).

start
$$
\longrightarrow
$$
 $\begin{array}{ccc}\n & 0 & \text{if } 0 & 0 \\
& 1 & \text{if } 0 & 1\n\end{array}$

 $\text{start} \longrightarrow \!\!\!\!\!\! \rightarrow \!\!\!\!\!\! \left(\begin{smallmatrix} p_0, q_0 \end{smallmatrix} \right) \!\!\!\!\!\! \stackrel{0}{\longrightarrow} \!\!\!\!\!\! \left(\begin{smallmatrix} p_2, q_1 \end{smallmatrix} \right)$

start
$$
\longrightarrow
$$
 $\begin{array}{ccc}\n p_0 & 0 & p_2 \\
\hline\n 1 & & & \\
0,1 & \nearrow & \\
0,1 & \$

Construct a DFA for $L_1 \cup L_2$ (recognised by the given two DFAs, respectively).

UTS:05I)

Construct a DFA for $L_1 \cap L_2$ (recognised by the given two DFAs, respectively).

UTS:05I)