41080 Theory of Computing Science

Week 3 Tutorial Class

Chuangi Zhang

Centre for Quantum Software and Information
University of Technology Sydney

22nd August, 2024

UTS:Q 58


https://qsi.uts.edu.au/

o Tutorial: how to do the powerset construction for an NFA

UTS:Q 58


https://qsi.uts.edu.au/

o Tutorial: how to do the powerset construction for an NFA

o Review: regular languages and regular expressions

UTS:Q 58


https://qsi.uts.edu.au/

o Tutorial: how to do the powerset construction for an NFA
o Review: regular languages and regular expressions

o Recipe: conversion between regular expressions and NFAs

UTS:Q 58


https://qsi.uts.edu.au/

Definition (DFA)
A deterministic finite automaton (DFA) is a five tuple (Q, %, qo, F,0) :
O (: a set of states;
@ X: an alphabet set;
@ ¢ € Q: the start state;
Q@ F C @ a set of accept states;
Q §: Qx> — @ a transition function.

The relationship between DFAs and NFAs

Definition (NFA)
A non-deterministic finite automaton (NFA) is a five tuple (@, %, Qo, F,9) :
Q A set of states Q;
@ The alphabet 3;
Q@ Qo C @: a set of start states;
Q@ F C (: a set of accept states;
Q J: Qx (XU{e}) — 29 a transition function.



https://qsi.uts.edu.au/

The relationship between DFAs and NFAs

Definition (DFA)

A deterministic finite automaton (DFA) is a five tuple (Q, %, qo, F,0) :

Q J: QxX — @: a transition function.

Definition (NFA)
A non-deterministic finite automaton (NFA) is a five tuple (@, %, Qo, F,9) :

Q@ J:Qx (ZU{e}) = 29 a transition function.



https://qsi.uts.edu.au/

The relationship between DFAs and NFAs

Definition (DFA)

A deterministic finite automaton (DFA) is a five tuple (Q, %, qo, F,0) :

Q J: QxX — (: a transition function.

Definition (NFA)
A non-deterministic finite automaton (NFA) is a five tuple (@, %, Qo, F,9) :

Q J: Qx (XU{e}) — 29 a transition function.



https://qsi.uts.edu.au/

The relationship between DFAs and NFAs

DFAs are actually a special form of NFAs.

UTS:Q 58


https://qsi.uts.edu.au/

The relationship between DFAs and NFAs

DFAs are actually a special form of NFAs.

o This basically means: given an arbitrary DFA, we can always
treat it as an NFA.

UTS:Q 58


https://qsi.uts.edu.au/

The relationship between DFAs and NFAs

DFAs are actually a special form of NFAs.

o This basically means: given an arbitrary DFA, we can always
treat it as an NFA.

e So, it is natural to wonder the converse: given an arbitrary
NFA, can we always construct a DFA that recognises the same
language as the original NFA does?

UTS:Q 58


https://qsi.uts.edu.au/

The relationship between DFAs and NFAs

DFAs are actually a special form of NFAs.

o This basically means: given an arbitrary DFA, we can always
treat it as an NFA.

e So, it is natural to wonder the converse: given an arbitrary
NFA, can we always construct a DFA that recognises the same
language as the original NFA does?

o The answer is YES, through the powerset construction.

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

Definition (e-closure)

For any state q € @, the e-closure of ¢ is defined as

e(q) = {q} U{d € Q: ¢ is reachable from g by e-transitions.}.

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

Definition (e-closure)

For any state q € @, the e-closure of ¢ is defined as

e(q) = {q} U{d € Q: ¢ is reachable from g by e-transitions.}.

uTS:Qsi


https://qsi.uts.edu.au/

Tutorial: powerset construction

Definition (e-closure)

For any state q € @, the e-closure of ¢ is defined as

e(q) = {q} U{d € Q: ¢ is reachable from g by e-transitions.}.

What’s the e-closure for each state?

uTS:Qsi


https://qsi.uts.edu.au/

Tutorial: powerset construction

Definition (e-closure)

For any state q € @, the e-closure of ¢ is defined as

e(q) = {q} U{d € Q: ¢ is reachable from g by e-transitions.}.

What’s the e-closure for each state?

® c(q) = {a};

uTS:Qsi


https://qsi.uts.edu.au/

Tutorial: powerset construction

Definition (e-closure)

For any state q € @, the e-closure of ¢ is defined as

e(q) = {q} U{d € Q: ¢ is reachable from g by e-transitions.}.

What’s the e-closure for each state?
° £(q0) = {qo};
° c(q1) ={aq1, @2}

uTS:Qsi


https://qsi.uts.edu.au/

Tutorial: powerset construction

Definition (e-closure)

For any state q € @, the e-closure of ¢ is defined as

e(q) = {q} U{d € Q: ¢ is reachable from g by e-transitions.}.

What’s the e-closure for each state?
° () ={a}
° e(q) ={q, @};
o c(q) ={a};

uTS:Qsi


https://qsi.uts.edu.au/

Tutorial: powerset construction

Definition (e-closure)

For any state q € @, the e-closure of ¢ is defined as

e(q) = {q} U{d € Q: ¢ is reachable from g by e-transitions.}.

What’s the e-closure for each state?
° £(q) = {a};
° e(q) ={q, @};
° £(q2) = {a};
(g3) =

o =(q3) = {as}. uTS:051


https://qsi.uts.edu.au/

Tutorial: powerset construction

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

0
(
start

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

1
start —> qo, 41, 42

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

1
start G, q1, ¢

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

1 0
start do, 41, 42

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

do, 41, 425 43

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

qo0, 491, 92, 43


https://qsi.uts.edu.au/

Tutorial: powerset construction

qo, 91, 42, 43 q0, 92, 43

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

start

q0, 92, 43

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

q0, 91, 42, 43 qo0, 92, 43

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction

q0, 91, 42, 43 qo0, 92, 43

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: powerset construction



https://qsi.uts.edu.au/

Tutorial: powerset construction



https://qsi.uts.edu.au/

Tutorial: powerset construction

@ 0

UTS:Q 58



https://qsi.uts.edu.au/

Tutorial: powerset construction

qo, 42, 43



https://qsi.uts.edu.au/

Tutorial: powerset construction



https://qsi.uts.edu.au/

Tutorial: powerset construction

start



https://qsi.uts.edu.au/

What is a regular language?

o NFAs are as powerful as DFAs.

UTS:Q 58


https://qsi.uts.edu.au/

What is a regular language?

o NFAs are as powerful as DFAs.

o The range of languages that can be recognised by all NFAs is
the same as that by all DFAs.

UTS:Q 58


https://qsi.uts.edu.au/

What is a regular language?

o NFAs are as powerful as DFAs.

o The range of languages that can be recognised by all NFAs is
the same as that by all DFAs.

o A language can be recognised by a DFA if and only if it can be
recognised by an NFA.

UTS:Q 58


https://qsi.uts.edu.au/

What is a regular language?

o NFAs are as powerful as DFAs.

o The range of languages that can be recognised by all NFAs is
the same as that by all DFAs.

o A language can be recognised by a DFA if and only if it can be
recognised by an NFA.

Definition (Regular languages)

A language is regular if there exists a DFA (or equivalently, an
NFA) that recognises it.

UTS:Q 58


https://qsi.uts.edu.au/

Some facts about regular languages

Theorem (Closure properties)

Regular languages are closed under the following operations:
Q Union: LiULy={weX*: we L orwe Ly}.
@ Intersection: 1 N Ly ={weX* : we€ Ly and w € Ly}.
@ Complement: =Ly ={weX*: w¢ L }.
Q@ Reverse: Lf ={ay...a1 €X*:ay...a; € Ly for each a; € X}.
@ Concatenation: Ly o Lo = {wywy € ¥* : wy € L1 and wy € Lo}.
Q Kleene star: Lf ={wy ... wp; € X"t w; € L1} U {e}.



https://qsi.uts.edu.au/

Some facts about regular languages

Theorem (Closure properties)

Regular languages are closed under the following operations:
Q Union: LiULy={weX*: we L orwe Ly}.

@ Concatenation: Ly o Lo = {wywy € ¥* : wy € L1 and wy € Lo}.
Q Kleene star: Lf ={wy ... wp; € X"t w; € L1} U {e}.

These three are crucial for understanding the notion of regular expressions!

uTS:Qsi


https://qsi.uts.edu.au/

What is a regular expression?

A reqular expression is a compact and precise way to
describe a reqular language.

UTS:Q 58


https://qsi.uts.edu.au/

What is a regular expression?

A reqular expression is a compact and precise way to
describe a reqular language.

Definition (Regular expressions)

Let X be an alphabet. A regular expression is defined inductively as follows:

UTS:Q 58


https://qsi.uts.edu.au/

What is a regular expression?

A reqular expression is a compact and precise way to
describe a reqular language.

Definition (Regular expressions)

Let X be an alphabet. A regular expression is defined inductively as follows:

@ Base case: Any single symbol a € ¥ U {e} is a regular expression.

uTS:Qsi


https://qsi.uts.edu.au/

What is a regular expression?

A reqular expression is a compact and precise way to
describe a reqular language.

Definition (Regular expressions)

Let X be an alphabet. A regular expression is defined inductively as follows:

@ Base case: Any single symbol a € XU {e} is a regular expression. We also
say the empty set () is a regular expression.

uTS:Qsi


https://qsi.uts.edu.au/

What is a regular expression?

A reqular expression is a compact and precise way to
describe a reqular language.

Definition (Regular expressions)

Let X be an alphabet. A regular expression is defined inductively as follows:

@ Base case: Any single symbol a € XU {e} is a regular expression. We also
say the empty set () is a regular expression.

© Inductive case: If Ry and Ry are regular expressions, then (R Rs), (R +
R5), and (R;)* are regular expressions.

uTS:Qsi


https://qsi.uts.edu.au/

What is a regular expression?

A reqular expression is a compact and precise way to
describe a reqular language.

Definition (Regular expressions)

Let X be an alphabet. A regular expression is defined inductively as follows:

@ Base case: Any single symbol a € XU {e} is a regular expression. We also
say the empty set () is a regular expression.

@ Inductive case: If Ry and Ry are regular expressions, then (R Rs), (R1 +
Ry), and (R;1)* are regular expressions.

Note that (R; R2) refers to the concatenation and (R; + Rs) refers to the union.

v

uTS:Qsi


https://qsi.uts.edu.au/

What is a regular expression?

What does the regular expression (10*) + (01*) mean?

UTS:Q 58


https://qsi.uts.edu.au/

What is a regular expression?

What does the regular expression (10*) 4+ (01*) mean?

The set of strings that either start with 1 and followed by any number of Os,

UTS:Q 58


https://qsi.uts.edu.au/

What is a regular expression?

What does the regular expression (10*) 4+ (01*) mean?

The set of strings that either start with 1 and followed by any number of Os,
or start with 0 and followed by any number of 1s.

UTS:Q 58


https://qsi.uts.edu.au/

What is a regular expression?

What does the regular expression (10*) + (01*) mean?

The set of strings that either start with 1 and followed by any number of Os,
or start with 0 and followed by any number of 1s.

UTS:Q 58


https://qsi.uts.edu.au/

What is a regular expression?

What does the regular expression (10*) + (01*) mean?

The set of strings that either start with 1 and followed by any number of Os,
or start with 0 and followed by any number of 1s.

UTS:Q 58


https://qsi.uts.edu.au/

What is a regular expression?

What does the regular expression (10*) + (01*) mean?

The set of strings that either start with 1 and followed by any number of Os,
or start with 0 and followed by any number of 1s.

What is a regular expression of L1 = {w € {a, b}* | w contains at least two as}? \

UTS:Q 58



https://qsi.uts.edu.au/

What is a regular expression?

What does the regular expression (10*) + (01*) mean?

The set of strings that either start with 1 and followed by any number of Os,
or start with 0 and followed by any number of 1s.

What is a regular expression of L1 = {w € {a, b}* | w contains at least two as}? \

Qoo

UTS:Q 58


https://qsi.uts.edu.au/

What is a regular expression?

What does the regular expression (10*) + (01*) mean?

The set of strings that either start with 1 and followed by any number of Os,
or start with 0 and followed by any number of 1s.

What is a regular expression of L1 = {w € {a, b}* | w contains at least two as}? \

(a+b)*ala+ b)*a(a+ b)*

UTS:Q 58


https://qsi.uts.edu.au/

What is a regular expression?

What does the regular expression (10*) + (01*) mean?

The set of strings that either start with 1 and followed by any number of Os,
or start with 0 and followed by any number of 1s.

What is a regular expression of L1 = {w € {a, b}* | w contains at least two as}? \

(a+b)*ala+ b)*ala+ b)*

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

o Does a regular expression always represent a regular language?



https://qsi.uts.edu.au/

From regular expression to NFA

o Does a regular expression always represent a regular language?

o The answer is YES!



https://qsi.uts.edu.au/

From regular expression to NFA

o Does a regular expression always represent a regular language?
o The answer is YES!

o Why: we can construct an NFA that recognises the language
represented by the given regular expression.



https://qsi.uts.edu.au/

From regular expression to NFA

o Does a regular expression always represent a regular language?
o The answer is YES!

o Why: we can construct an NFA that recognises the language
represented by the given regular expression.

e How: follow the recipe for the base case and the inductive case.



https://qsi.uts.edu.au/

From regular expression to NFA

o Does a regular expression always represent a regular language?
o The answer is YES!

o Why: we can construct an NFA that recognises the language
represented by the given regular expression.

e How: follow the recipe for the base case and the inductive case.

Definition (Regular expressions)

Let ¥ be an alphabet. A regular expression is defined inductively as follows:

@ Base case: Any single symbol a € X U {e} is a regular expression. We also
say the empty set () is a regular expression.



https://qsi.uts.edu.au/

From regular expression to NFA

Base case:

o
start M

The NFA recognising a single symbol o € X.

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

Base case:

o
start M

The NFA recognising a single symbol o € X.

start @

The NFA recognising a single ¢.

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

Base case:

o
start *)Q—)Q

The NFA recognising a single symbol o € X.

start @

The NFA recognising a single ¢.

start *)Q

The NFA recognising an empty set ().

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

Inductive case:
e How to deal with the star operation on an NFA:
@ Use e-transition(s) to connect the accept state(s) to the start state.
@ Draw a new start state and use an e-transition to connect it to the
original start state. Also make the new start state acceptable.

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

Inductive case:
e How to deal with the star operation on an NFA:
@ Use e-transition(s) to connect the accept state(s) to the start state.
@ Draw a new start state and use an e-transition to connect it to the
original start state. Also make the new start state acceptable.

e How to deal with the concatenation of two NFAs:
@ Use e-transition(s) to connect the accept state(s) in the first NFA to
the start state in the second NFA.
@ Remain the accept state(s) in the second NFA but change the accept
state(s) in the first NFA to the general state(s).

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

Inductive case:
e How to deal with the star operation on an NFA:

@ Use e-transition(s) to connect the accept state(s) to the start state.
© Draw a new start state and use an e-transition to connect it to the
original start state. Also make the new start state acceptable.

o How to deal with the concatenation of two NFAs:

@ Use e-transition(s) to connect the accept state(s) in the first NFA to
the start state in the second NFA.

@ Remain the accept state(s) in the second NFA but change the accept
state(s) in the first NFA to the general state(s).

o How to deal with the union of two NFAs:

@ Draw a new start state and use e-transitions to connect it to the

original start states in the two NFAs.
UTS:0 58


https://qsi.uts.edu.au/

From regular expression to NFA

Let’s try to construct an NFA recognising 0*!

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

Let’s try to construct an NFA recognising 0*!

First, we recall the base case that recognises a single 0.

0
start —

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

Recipe (how to deal with the star operation)

@ Use e-transition(s) to connect the accept state(s) to the start state.

Let’s try to construct an NFA recognising 0*!

Then, we follow the recipe of the star operation.

0

start —f

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

Recipe (how to deal with the star operation)

@ Use e-transition(s) to connect the accept state(s) to the start state.

@ Draw a new start state and use an e-transition to connect it to the original
start state. Also make the new start state acceptable.

Let’s try to construct an NFA recognising 0*!

Then, we follow the recipe of the star operation.

St&l‘t@ VG Q

3

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

Let’s try to construct an NFA recognising 10*!

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

Let’s try to construct an NFA recognising 10*!

First, we recall the base case that recognises a single 1.

1
start —

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

Recipe (how to deal with the concatenation operation)

@ Use e-transition(s) to connect the accept state(s) in the first NFA to the
start state in the second NFA.

Let’s try to construct an NFA recognising 10*!
Then, we follow the recipe of the concatenation operation.
st~ =~ OO0~

c uTS:Q5!



https://qsi.uts.edu.au/

From regular expression to NFA

Recipe (how to deal with the concatenation operation)

@ Use e-transition(s) to connect the accept state(s) in the first NFA to the
start state in the second NFA.

© Remain the accept state(s) in the second NFA but change the accept
state(s) in the first NFA to the general state(s).

Let’s try to construct an NFA recognising 10*!
Then, we follow the recipe of the concatenation operation.
san (O OO

c uTS:Q5!



https://qsi.uts.edu.au/

From regular expression to NFA

Similarly, the NFA recognising 01" would be

Start@0©6©€w

£ UTS:QSi



https://qsi.uts.edu.au/

From regular expression to NFA

Let’s try to construct an NFA recognising (10*)-(01*)!

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

Let’s try to construct an NFA recognising (10*)-(01*)!

First, we recall the NFAs that recognise 10* and 01*, respectively.

start—>©1©5©8@

€
0
start — >—’<>€<>E@®
€

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

Let’s try to construct an NFA recognising (10*)-(01*)!

First, we recall the NFAs that recognise 10* and 01*, respectively.

9

start —>© 8 /\ 8 @
uTS:Q5!

s ==



https://qsi.uts.edu.au/

From regular expression to NFA

Let’s try to construct an NFA recognising (10*)-(01*)!

First, we recall the NFAs that recognise 10* and 01*, respectively.

€
1S

UTS:Q 58


https://qsi.uts.edu.au/

From regular expression to NFA

Recipe (how to deal with the union operation)

@ Draw a new start state and use e-transitions to connect it to the original
start states in the two NFAs.

Let’s try to construct an NFA recognising (10*)-+(01*)!

Then, we follow the recipe of the union operation.



https://qsi.uts.edu.au/

From regular expression to NFA

Draw an NFA recognising the language represented by (10*)-+(01%).

Solution:

start



https://qsi.uts.edu.au/

From NFA to regular expression

o Given a regular language, can we always find a regular expres-
sion that represents?

UTS:Q 58


https://qsi.uts.edu.au/

From NFA to regular expression

o Given a regular language, can we always find a regular expres-
sion that represents?

e The answer is also YES!

UTS:Q 58


https://qsi.uts.edu.au/

From NFA to regular expression

o Given a regular language, can we always find a regular expres-
sion that represents?

e The answer is also YES!

o Why: we can construct a generalised NFA that recognises the
given language where the arrows can carry regular expressions.

UTS:Q 58


https://qsi.uts.edu.au/

From NFA to regular expression

o Given a regular language, can we always find a regular expres-
sion that represents?

e The answer is also YES!

o Why: we can construct a generalised NFA that recognises the
given language where the arrows can carry regular expressions.

o How: follow the recipe to eliminate the states one-by-one.

UTS:Q 58


https://qsi.uts.edu.au/

From NFA to regular expression

Write a regular expression representing the language recognised by
the following NFA.

start

UTS:Q 58


https://qsi.uts.edu.au/

From NFA to regular expression

Write a regular expression representing the language recognised by
the following NFA.

start

UTS:Q 58


https://qsi.uts.edu.au/

From NFA to regular expression

Write a regular expression representing the language recognised by
the following NFA.

start 10*1

UTS:Q 58


https://qsi.uts.edu.au/

From NFA to regular expression

Write a regular expression representing the language recognised by
the following NFA.

start 10*1

UTS:Q 58


https://qsi.uts.edu.au/

From NFA to regular expression

Write a regular expression representing the language recognised by
the following NFA.
0+10*1

start ~©

UTS:Q 58


https://qsi.uts.edu.au/

From NFA to regular expression

Write a regular expression representing the language recognised by
the following NFA.

0+ 1071

start ~©

Solution: (0 + 10*1)*.

UTS:Q 58


https://qsi.uts.edu.au/

