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Tutorial: how to do the powerset construction for an NFA

Review: regular languages and regular expressions

Recipe: conversion between regular expressions and NFAs
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The relationship between DFAs and NFAs

Definition (DFA)
A deterministic finite automaton (DFA) is a five tuple (Q,Σ, q0,F, δ) :

1 Q: a set of states;
2 Σ: an alphabet set;
3 q0 ∈ Q: the start state;
4 F ⊆ Q: a set of accept states;
5 δ : Q × Σ → Q: a transition function.

Definition (NFA)
A non-deterministic finite automaton (NFA) is a five tuple (Q,Σ,Q0,F, δ) :

1 A set of states Q;
2 The alphabet Σ;
3 Q0 ⊆ Q: a set of start states;
4 F ⊆ Q: a set of accept states;
5 δ : Q × (Σ ∪ {ε}) → 2Q: a transition function.
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The relationship between DFAs and NFAs

DFAs are actually a special form of NFAs.
This basically means: given an arbitrary DFA, we can always
treat it as an NFA.

So, it is natural to wonder the converse: given an arbitrary
NFA, can we always construct a DFA that recognises the same
language as the original NFA does?

The answer is YES, through the powerset construction.
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Tutorial: powerset construction

Definition (ε-closure)
For any state q ∈ Q, the ε-closure of q is defined as

ε(q) = {q} ∪ {q′ ∈ Q : q′ is reachable from q by ε-transitions.}.

q0start q1 q2 q3

0, 1

1 0, ε 1

0, 1

What’s the ε-closure for each state?
ε(q0) = {q0};
ε(q1) = {q1, q2};
ε(q2) = {q2};
ε(q3) = {q3}.
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Tutorial: powerset construction

q0start q1 q2 q3

0, 1

1 0, ε 1

0, 1

q0start ε(q0), ε(q1)
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What is a regular language?

NFAs are as powerful as DFAs.

The range of languages that can be recognised by all NFAs is
the same as that by all DFAs.

A language can be recognised by a DFA if and only if it can be
recognised by an NFA.

Definition (Regular languages)
A language is regular if there exists a DFA (or equivalently, an
NFA) that recognises it.
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Some facts about regular languages

Theorem (Closure properties)
Regular languages are closed under the following operations:

1 Union: L1 ∪ L2 = {w ∈ Σ∗ : w ∈ L1 or w ∈ L2}.
2 Intersection: L1 ∩ L2 = {w ∈ Σ∗ : w ∈ L1 and w ∈ L2}.
3 Complement: ¬L1 = {w ∈ Σ∗ : w /∈ L1}.
4 Reverse: LR

1 = {ak . . . a1 ∈ Σ∗ : a1 . . . ak ∈ L1 for each ai ∈ Σ}.
5 Concatenation: L1 ◦ L2 = {w1w2 ∈ Σ∗ : w1 ∈ L1 and w2 ∈ L2}.
6 Kleene star: L∗

1 = {w1 . . .wk ∈ Σ∗ : wi ∈ L1} ∪ {ε}.

These three are crucial for understanding the notion of regular expressions!
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What is a regular expression?

A regular expression is a compact and precise way to
describe a regular language.

Definition (Regular expressions)
Let Σ be an alphabet. A regular expression is defined inductively as follows:

1 Base case: Any single symbol a ∈ Σ∪ {ε} is a regular expression. We also
say the empty set ∅ is a regular expression.

2 Inductive case: If R1 and R2 are regular expressions, then (R1R2), (R1 +
R2), and (R1)

∗ are regular expressions.
Note that (R1R2) refers to the concatenation and (R1+R2) refers to the union.

https://qsi.uts.edu.au/


 

 

What is a regular expression?

A regular expression is a compact and precise way to
describe a regular language.

Definition (Regular expressions)
Let Σ be an alphabet. A regular expression is defined inductively as follows:

1 Base case: Any single symbol a ∈ Σ∪ {ε} is a regular expression. We also
say the empty set ∅ is a regular expression.

2 Inductive case: If R1 and R2 are regular expressions, then (R1R2), (R1 +
R2), and (R1)

∗ are regular expressions.
Note that (R1R2) refers to the concatenation and (R1+R2) refers to the union.

https://qsi.uts.edu.au/


 

 

What is a regular expression?

A regular expression is a compact and precise way to
describe a regular language.

Definition (Regular expressions)
Let Σ be an alphabet. A regular expression is defined inductively as follows:

1 Base case: Any single symbol a ∈ Σ∪ {ε} is a regular expression. We also
say the empty set ∅ is a regular expression.

2 Inductive case: If R1 and R2 are regular expressions, then (R1R2), (R1 +
R2), and (R1)

∗ are regular expressions.
Note that (R1R2) refers to the concatenation and (R1+R2) refers to the union.

https://qsi.uts.edu.au/


 

 

What is a regular expression?

A regular expression is a compact and precise way to
describe a regular language.

Definition (Regular expressions)
Let Σ be an alphabet. A regular expression is defined inductively as follows:

1 Base case: Any single symbol a ∈ Σ∪ {ε} is a regular expression. We also
say the empty set ∅ is a regular expression.

2 Inductive case: If R1 and R2 are regular expressions, then (R1R2), (R1 +
R2), and (R1)

∗ are regular expressions.
Note that (R1R2) refers to the concatenation and (R1+R2) refers to the union.

https://qsi.uts.edu.au/


 

 

What is a regular expression?

A regular expression is a compact and precise way to
describe a regular language.

Definition (Regular expressions)
Let Σ be an alphabet. A regular expression is defined inductively as follows:

1 Base case: Any single symbol a ∈ Σ∪ {ε} is a regular expression. We also
say the empty set ∅ is a regular expression.

2 Inductive case: If R1 and R2 are regular expressions, then (R1R2), (R1 +
R2), and (R1)

∗ are regular expressions.
Note that (R1R2) refers to the concatenation and (R1+R2) refers to the union.

https://qsi.uts.edu.au/


 

 

What is a regular expression?

A regular expression is a compact and precise way to
describe a regular language.

Definition (Regular expressions)
Let Σ be an alphabet. A regular expression is defined inductively as follows:

1 Base case: Any single symbol a ∈ Σ∪ {ε} is a regular expression. We also
say the empty set ∅ is a regular expression.

2 Inductive case: If R1 and R2 are regular expressions, then (R1R2), (R1 +
R2), and (R1)

∗ are regular expressions.
Note that (R1R2) refers to the concatenation and (R1+R2) refers to the union.

https://qsi.uts.edu.au/


 

 

What is a regular expression?

Exercise 1
What does the regular expression (10∗) + (01∗) mean?

The set of strings that either start with 1 and followed by any number of 0s,
or start with 0 and followed by any number of 1s.

Exercise 2
What is a regular expression of L1 = {w ∈ {a, b}∗ | w contains at least two as}?

aa
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From regular expression to NFA

Does a regular expression always represent a regular language?

The answer is YES!

Why: we can construct an NFA that recognises the language
represented by the given regular expression.

How: follow the recipe for the base case and the inductive case.

Definition (Regular expressions)
Let Σ be an alphabet. A regular expression is defined inductively as follows:

1 Base case: Any single symbol a ∈ Σ∪ {ε} is a regular expression. We also
say the empty set ∅ is a regular expression.

2 Inductive case: If R1 and R2 are regular expressions, then (R1R2), (R1 +
R2), and (R1)

∗ are regular expressions.
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2 Inductive case: If R1 and R2 are regular expressions, then (R1R2), (R1 +
R2), and (R1)

∗ are regular expressions.
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From regular expression to NFA

Base case:

start σ

The NFA recognising a single symbol σ ∈ Σ.

start

The NFA recognising a single ε.

start

The NFA recognising an empty set ∅.
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From regular expression to NFA

Base case:

start σ

The NFA recognising a single symbol σ ∈ Σ.

start

The NFA recognising a single ε.

start

The NFA recognising an empty set ∅.

https://qsi.uts.edu.au/


 

 

From regular expression to NFA

Inductive case:
How to deal with the star operation on an NFA:

1 Use ε-transition(s) to connect the accept state(s) to the start state.
2 Draw a new start state and use an ε-transition to connect it to the

original start state. Also make the new start state acceptable.

How to deal with the concatenation of two NFAs:
1 Use ε-transition(s) to connect the accept state(s) in the first NFA to

the start state in the second NFA.
2 Remain the accept state(s) in the second NFA but change the accept

state(s) in the first NFA to the general state(s).

How to deal with the union of two NFAs:
1 Draw a new start state and use ε-transitions to connect it to the

original start states in the two NFAs.
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From regular expression to NFA

Recipe (how to deal with the star operation)
1 Use ε-transition(s) to connect the accept state(s) to the start state.
2 Draw a new start state and use an ε-transition to connect it to the original

start state. Also make the new start state acceptable.

Let’s try to construct an NFA recognising 0∗!
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From regular expression to NFA

Recipe (how to deal with the star operation)
1 Use ε-transition(s) to connect the accept state(s) to the start state.
2 Draw a new start state and use an ε-transition to connect it to the original

start state. Also make the new start state acceptable.

Let’s try to construct an NFA recognising 0∗!

Then, we follow the recipe of the star operation.

start ε 0

ε

https://qsi.uts.edu.au/


 

 

From regular expression to NFA

Recipe (how to deal with the concatenation operation)
1 Use ε-transition(s) to connect the accept state(s) in the first NFA to the

start state in the second NFA.
2 Remain the accept state(s) in the second NFA but change the accept

state(s) in the first NFA to the general state(s).

Let’s try to construct an NFA recognising 10∗!
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From regular expression to NFA

Recipe (how to deal with the concatenation operation)
1 Use ε-transition(s) to connect the accept state(s) in the first NFA to the

start state in the second NFA.
2 Remain the accept state(s) in the second NFA but change the accept

state(s) in the first NFA to the general state(s).

Let’s try to construct an NFA recognising 10∗!

First, we recall the base case that recognises a single 1.

start 1
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From regular expression to NFA

Recipe (how to deal with the concatenation operation)
1 Use ε-transition(s) to connect the accept state(s) in the first NFA to the

start state in the second NFA.
2 Remain the accept state(s) in the second NFA but change the accept

state(s) in the first NFA to the general state(s).

Let’s try to construct an NFA recognising 10∗!

Then, we follow the recipe of the concatenation operation.

start 1 ε ε 0

ε
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From regular expression to NFA

Recipe (how to deal with the concatenation operation)
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From regular expression to NFA

Recipe (how to deal with the concatenation operation)
1 Use ε-transition(s) to connect the accept state(s) in the first NFA to the

start state in the second NFA.
2 Remain the accept state(s) in the second NFA but change the accept

state(s) in the first NFA to the general state(s).

Let’s try to construct an NFA recognising 10∗!

Similarly, the NFA recognising 01∗ would be

start 0 ε ε 1

ε
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From regular expression to NFA

Recipe (how to deal with the union operation)
1 Draw a new start state and use ε-transitions to connect it to the original

start states in the two NFAs.

Let’s try to construct an NFA recognising (10∗)+(01∗)!
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From regular expression to NFA

Recipe (how to deal with the union operation)
1 Draw a new start state and use ε-transitions to connect it to the original

start states in the two NFAs.

Let’s try to construct an NFA recognising (10∗)+(01∗)!

First, we recall the NFAs that recognise 10∗ and 01∗, respectively.

start 1 ε ε 0

ε

start 0 ε ε 1

ε

start

ε

ε
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From regular expression to NFA

Recipe (how to deal with the union operation)
1 Draw a new start state and use ε-transitions to connect it to the original

start states in the two NFAs.

Let’s try to construct an NFA recognising (10∗)+(01∗)!

Then, we follow the recipe of the union operation.
1 ε ε 0

ε

0 ε ε 1

ε

start

ε

ε
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From regular expression to NFA

Exercise
Draw an NFA recognising the language represented by (10∗)+(01∗).

Solution:

1 ε ε 0

ε

0 ε ε 1

ε

start

ε

ε
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From NFA to regular expression

Given a regular language, can we always find a regular expres-
sion that represents?

The answer is also YES!

Why: we can construct a generalised NFA that recognises the
given language where the arrows can carry regular expressions.

How: follow the recipe to eliminate the states one-by-one.
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given language where the arrows can carry regular expressions.
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From NFA to regular expression

Exercise
Write a regular expression representing the language recognised by
the following NFA.

start

0
1

0

1
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From NFA to regular expression

Exercise
Write a regular expression representing the language recognised by
the following NFA.

start

0

10∗1
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From NFA to regular expression

Exercise
Write a regular expression representing the language recognised by
the following NFA.
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From NFA to regular expression

Exercise
Write a regular expression representing the language recognised by
the following NFA.

start

0 + 10∗1

Solution: (0 + 10∗1)∗.
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