41080 Theory of Computing Science Week 5 Tutorial Class

Chuanqi Zhang

Centre for Quantum Software and Information University of Technology Sydney

5th September, 2024

A context-free grammar (CFG) is a four tuple (V, S, Σ, R) :

- V is the variable set.
- $S \in V$ is the start variable.
- Σ is the terminal set (i.e., alphabet).
- R is a set of rules. Each rule is of the form $A \to w$,

A context-free grammar (CFG) is a four tuple (V, S, Σ, R) :

- V is the variable set.
- $S \in V$ is the start variable.
- Σ is the terminal set (i.e., alphabet).

• R is a set of rules. Each rule is of the form $A \to w$,

A context-free grammar (CFG) is a four tuple (V, S, Σ, R) :

- V is the variable set.
- $S \in V$ is the start variable.
- Σ is the terminal set (i.e., alphabet).

• R is a set of rules. Each rule is of the form $A \to w_i$

- A context-free grammar (CFG) is a four tuple (V, S, Σ, R) :
 - V is the variable set.
 - $S \in V$ is the start variable.
 - Σ is the terminal set (i.e., alphabet).
 - R is a set of rules. Each rule is of the form $A \to w$, where $A \to w$

- A context-free grammar (CFG) is a four tuple (V, S, Σ, R) :
 - V is the variable set.
 - $S \in V$ is the start variable.
 - Σ is the terminal set (i.e., alphabet).
 - *R* is a set of rules. Each rule is of the form $A \to w$, where *A* is a variable and *w* is a string of variables and terminals.

- A context-free grammar (CFG) is a four tuple (V, S, Σ, R) :
 - V is the variable set.
 - $S \in V$ is the start variable.
 - Σ is the terminal set (i.e., alphabet).
 - R is a set of rules. Each rule is of the form $A \to w$, where A is a variable and w is a string of variables and terminals.

- A context-free grammar (CFG) is a four tuple (V, S, Σ, R) :
 - V is the variable set.
 - $S \in V$ is the start variable.
 - Σ is the terminal set (i.e., alphabet).
 - R is a set of rules. Each rule is of the form $A \to w$, where A is a variable and w is a string of variables and terminals. For example, $A \to 0B0$.

- A context-free grammar (CFG) is a four tuple (V, S, Σ, R) :
 - V is the variable set.
 - $S \in V$ is the start variable.
 - Σ is the terminal set (i.e., alphabet).
 - R is a set of rules. Each rule is of the form $A \to w$, where A is a variable and w is a string of variables and terminals.

- A context-free grammar (CFG) is a four tuple (V, S, Σ, R) :
 - V is the variable set.
 - $S \in V$ is the start variable.
 - Σ is the terminal set (i.e., alphabet).
 - R is a set of rules. Each rule is of the form $A \to w$, where A is a variable and w is a string of variables and terminals.

The whole set of strings generated by G is denoted as L(G).

Example (CFG)

Given a context-free grammar $G=(\mathit{V}, \mathit{S}, \Sigma, \mathit{R})$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

Trial 1:

 $e \in L(G)!$

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \to 0S1, S \to \varepsilon\}$ is the rule set.

Then what is L(G)?

Trial 1:

 $\varepsilon \in L(G)!$

Example (CFG)

Given a context-free grammar $G=(\mathit{V}, \mathit{S}, \Sigma, \mathit{R})$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

Trial 1:

$$e \in L(G)!$$

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

- $0 S1 \Rightarrow 01;$
- $01 \in L(G)!$

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{ S \rightarrow 0S1, S \rightarrow \varepsilon \}$ is the rule set.

Then what is L(G)?

- $S \Rightarrow 0S1;$
- $0S1 \Rightarrow 01;$
- $01 \in L(G)!$

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \to 0S1, S \to \varepsilon\}$ is the rule set.

Then what is L(G)?

- $2 \ 0S1 \Rightarrow 01;$
- $01 \in L(G)!$

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

- $2 \ 0S1 \Rightarrow \mathbf{01};$
- **3** $01 \in L(G)!$

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

Trial 3:

- $0S1 \Rightarrow 00S11;$
- $\bigcirc 00S11 \Rightarrow 000S111;$
- $\bigcirc 000S111 \Rightarrow 000111;$
- (a) $000111 \in L(G)!$

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{ S \rightarrow 0S1, S \rightarrow \varepsilon \}$ is the rule set.

Then what is L(G)?

Trial 3:

- $0S1 \Rightarrow 00S11;$
- $\bigcirc 00S11 \Rightarrow 000S111;$
- $\bigcirc 000S111 \Rightarrow 000111;$
- (a) $000111 \in L(G)!$

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{ S \rightarrow 0S1, S \rightarrow \varepsilon \}$ is the rule set.

Then what is L(G)?

Trial 3:

- $0 S1 \Rightarrow 0 0S1;$
- $\bigcirc 00S11 \Rightarrow 000S111;$
- $000S111 \Rightarrow 000111;$
- (a) $000111 \in L(G)!$

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{ S \rightarrow 0S1, S \rightarrow \varepsilon \}$ is the rule set.

Then what is L(G)?

Trial 3:

- $0S1 \Rightarrow 00S11;$
- $00S11 \Rightarrow 000S111;$
- $000S111 \Rightarrow 000111;$
- $000111 \in L(G)!$

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \to 0S1, S \to \varepsilon\}$ is the rule set.

Then what is L(G)?

Trial 3:

- $0S1 \Rightarrow 00S11;$
- $00S11 \Rightarrow 000S111;$
- $000S111 \Rightarrow 000111;$

(a) $000111 \in L(G)!$

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

- $0S1 \Rightarrow 00S11;$
- $00S11 \Rightarrow 000S111;$
- $000S111 \Rightarrow 000111;$
- $000111 \in L(G)!$

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

```
• \varepsilon \in L(G);
```

- $01 \in L(G);$
- $000111 \in L(G);$

• • • •

and analyse the pattern.

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

```
• \varepsilon \in L(G);
```

```
• 01 \in L(G);
```

```
• 000111 \in L(G);
```

```
• • • •
```

and analyse the pattern.

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

- $\varepsilon \in L(G);$
- $01 \in L(G);$
- $000111 \in L(G);$

• • • •

and analyse the pattern.

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

- $\varepsilon \in L(G);$
- $01 \in L(G);$
- $000111 \in L(G);$

. . . .

and analyse the pattern.

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

- $\varepsilon \in L(G);$
- $01 \in L(G);$
- $000111 \in L(G);$

o . . .

and analyse the pattern.

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

- $\varepsilon \in L(G);$
- $01 \in L(G);$
- $000111 \in L(G);$

• • • •

and analyse the pattern.

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

- $\varepsilon \in L(G);$
- $01 \in L(G);$
- **000111** \in *L*(*G*);

• • • •

and analyse the pattern.

Only terminals (or ε) can appear in the final strings,

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

- $\varepsilon \in L(G);$
- $01 \in L(G);$
- $000111 \in L(G);$

• • • •

and analyse the pattern.

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \to 0S1, S \to \varepsilon\}$ is the rule set.

Then what is L(G)?

Solution: $L(G) = \{0^n 1^n : n \in \mathbb{N}\}.$

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

Solution: $L(G) = \{0^n 1^n : n \in \mathbb{N}\}.$

Example (CFG)

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\}$ is the variable set;
- $S \in V$ is the start variable;
- $\Sigma = \{0, 1\}$ is the terminal set;
- $R = \{S \rightarrow 0S1 \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

Solution: $L(G) = \{0^n 1^n : n \in \mathbb{N}\}.$

Exercise 1

Given a context-free grammar $G=(\mathit{V}, \mathit{S}, \Sigma, \mathit{R})$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa, S \rightarrow bSb, S \rightarrow \varepsilon\}$ is the rule set.

Then what is L(G)?

Exercise 1

Given a context-free grammar $G=(\mathit{V}, \mathit{S}, \Sigma, \mathit{R})$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

Trial 1:

- $\varepsilon \in L(G)!$

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{ S \rightarrow aSa \mid bSb \mid \varepsilon \}$ is the rule set.

Then what is L(G)?

Trial 1:

 $\varepsilon \in L(G)!$

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

Trial 1:

- $e \in L(G)!$

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

- $aSa \Rightarrow abSba;$
- $abba \in L(G)!$

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{ S \rightarrow aSa \mid bSb \mid \varepsilon \}$ is the rule set.

Then what is L(G)?

- $aSa \Rightarrow abSba;$
- $abba \in L(G)!$

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{ S \rightarrow aSa \mid bSb \mid \varepsilon \}$ is the rule set.

Then what is L(G)?

- $a Sa \Rightarrow abSba;$
- $abba \in L(G)!$

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{ S \rightarrow aSa \mid bSb \mid \varepsilon \}$ is the rule set.

Then what is L(G)?

Trial 2:

- $\ 2 \ \ aSa \Rightarrow abSba;$

• $abba \in L(G)!$

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

- $\ 2 \ \ aSa \Rightarrow abSba;$
- $abba \in L(G)!$

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

- $bbaabb \in L(G)!$

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{ S \rightarrow aSa \mid bSb \mid \varepsilon \}$ is the rule set.

Then what is L(G)?

- $S \Rightarrow bSb;$

- $bbaabb \in L(G)!$

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{ S \rightarrow aSa \mid bSb \mid \varepsilon \}$ is the rule set.

Then what is L(G)?

- $bbaabb \in L(G)!$

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{ S \rightarrow aSa \mid bSb \mid \varepsilon \}$ is the rule set.

Then what is L(G)?

- $bbaabb \in L(G)!$

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{ S \rightarrow aSa \mid bSb \mid \varepsilon \}$ is the rule set.

Then what is L(G)?

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

- () $bbaSabb \Rightarrow bbaabb;$
- $b baabb \in L(G)!$

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

• $\varepsilon \in L(G);$

- $abba \in L(G);$
- $bbaabb \in L(G);$

• • • •

and analyse the pattern.

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

- $\varepsilon \in L(G);$
- $abba \in L(G);$
- $bbaabb \in L(G);$

• • • •

and analyse the pattern.

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

- $\varepsilon \in L(G);$
- $abba \in L(G);$
- $bbaabb \in L(G);$

• • • •

and analyse the pattern.

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

- $\varepsilon \in L(G);$
- $abba \in L(G);$
- $bbaabb \in L(G);$

• • • •

and analyse the pattern.

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

- $\varepsilon \in L(G);$
- $abba \in L(G);$
- $bbaabb \in L(G);$

• • • •

and analyse the pattern.

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

- $\varepsilon \in L(G);$
- $abba \in L(G);$
- $bbaabb \in L(G);$

• • • •

and analyse the pattern.

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

- $\varepsilon \in L(G);$
- $abba \in L(G);$
- **bbaabb** $\in L(G);$

• • • •

and analyse the pattern.

Only terminals (or ε) can appear in the final strings,

From language to CFG

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

We collect such generated strings:

- $\varepsilon \in L(G);$
- $abba \in L(G);$
- $bbaabb \in L(G);$

• • • •

and analyse the pattern.

Only terminals (or ε) can appear in the final strings, while variables must go to terminals or ε at the end!

From language to CFG

Exercise 1

Given a context-free grammar $G = (V, S, \Sigma, R)$ where

- $V = \{S\};$
- S is the start variable;
- $\Sigma = \{a, b\}$ is the terminal set;
- $R = \{S \rightarrow aSa \mid bSb \mid \varepsilon\}$ is the rule set.

Then what is L(G)?

Solution: $L(G) = \{ww^R | w \in \{a, b\}^*\}.$

- Solution: $G = (V, S_0, \Sigma, R)$ where
 - $V = \{S_0, S_1\};$
 - S_0 is the start variable;
 - $\Sigma = \{0, 1\};$

- Solution: $G = (V, S_0, \Sigma, R)$ where
 - $V = \{S_0, S_1\};$
 - S_0 is the start variable;
 - $\Sigma = \{0, 1\};$

- Solution: $G = (V, S_0, \Sigma, R)$ where
 - $V = \{S_0, S_1\};$
 - S_0 is the start variable;
 - $\Sigma = \{0, 1\}$

- Solution: $G = (V, S_0, \Sigma, R)$ where
 - $V = \{S_0, S_1\};$
 - S_0 is the start variable;
 - $\Sigma = \{0, 1\};$

- Solution: $G = (V, S_0, \Sigma, R)$ where
 - $V = \{S_0, S_1\};$
 - S_0 is the start variable;
 - $\Sigma = \{0, 1\};$
 - $R = \{S_0 \rightarrow 0S_00, S_0 \rightarrow S_1, S_1 \rightarrow 1S_1, S_1 \rightarrow \varepsilon\};$

- Solution: $G = (V, S_0, \Sigma, R)$ where
 - $V = \{S_0, S_1\};$
 - S_0 is the start variable;
 - $\Sigma = \{0, 1\};$
 - $R = \{S_0 \rightarrow 0S_00, S_0 \rightarrow S_1, S_1 \rightarrow 1S_1, S_1 \rightarrow \varepsilon\};$

Construct a context-free grammar for $L_a = \{0^n 1^m 0^n : n, m \in \mathbb{N}\}.$

Solution: $G = (V, S_0, \Sigma, R)$ where

- $V = \{S_0, S_1\};$
- S_0 is the start variable;
- $\Sigma = \{0, 1\};$
- $R = \{S_0 \rightarrow 0S_00, S_0 \rightarrow S_1, S_1 \rightarrow 1S_1, S_1 \rightarrow \varepsilon\};$

- Solution: $G = (V, S_0, \Sigma, R)$ where
 - $V = \{S_0, S_1\};$
 - S_0 is the start variable;
 - $\Sigma = \{0, 1\};$
 - $R = \{S_0 \rightarrow 0S_00, S_0 \rightarrow S_1, S_1 \rightarrow 1S_1, S_1 \rightarrow \varepsilon\};$

- Solution: $G = (V, S_0, \Sigma, R)$ where
 - $V = \{S_0, S_1\};$
 - S_0 is the start variable;
 - $\Sigma = \{0, 1\};$
 - $R = \{S_0 \rightarrow 0S_00 \mid S_1, S_1 \rightarrow 1S_1 \mid \varepsilon\}.$

Construct a context-free grammar for $L_a = \{0^n 1^m 0^n : n, m \in \mathbb{N}\}.$

Solution: $G = (V, S_0, \Sigma, R)$ where

- $V = \{S_0, S_1\};$
- S_0 is the start variable;
- $\Sigma = \{0, 1\};$
- $R = \{S_0 \to 0S_00 \mid S_1, S_1 \to 1S_1 \mid \varepsilon\}.$

Exercise 3

Construct a PDA from the following CFG:

 $S \to 0S0 \mid A$ $A \to 1A \mid \varepsilon$

Exercise 3

Construct a PDA from the following CFG:

 $\begin{array}{c} S \rightarrow 0S0 \mid A \\ \\ A \rightarrow 1A \mid \varepsilon \end{array}$

Step 1: Start with the following PDA.

Exercise 3

Construct a PDA from the following CFG:

 $\begin{array}{c} S \rightarrow 0S0 \mid A \\ \\ A \rightarrow 1A \mid \varepsilon \end{array}$

Step 2: For every terminal $\sigma \in \Sigma$, add a loop $\sigma, \sigma \to \varepsilon$ to the state q_{loop} .

Exercise 3

Construct a PDA from the following CFG:

 $\begin{array}{c} S \rightarrow 0S0 \mid A \\ \\ A \rightarrow 1A \mid \varepsilon \end{array}$

Step 2: For every terminal $\sigma \in \Sigma$, add a loop $\sigma, \sigma \to \varepsilon$ to the state q_{loop} .

Exercise 3

Construct a PDA from the following CFG:

 $\begin{array}{c} S \rightarrow 0S0 \mid A \\ \\ A \rightarrow 1A \mid \varepsilon \end{array}$

Step 3: For every rule $A \to w$, add a loop $\varepsilon, A \to w$ to q_{loop} .

Exercise 3

Construct a PDA from the following CFG:

 $\begin{array}{c} S \rightarrow 0S0 \mid A \\ \\ A \rightarrow 1A \mid \varepsilon \end{array}$

Step 3: For every rule $A \to w$, add a loop $\varepsilon, A \to w$ to q_{loop} .

Exercise 3

Construct a PDA from the following CFG:

 $\begin{array}{c} S \rightarrow 0S0 \mid A \\ \\ A \rightarrow 1A \mid \varepsilon \end{array}$

Step 4: For every w contained in the loop, expand it from right to left.

Step 4: For every w contained in the loop, expand it from right to left.

How to deal with $S \rightarrow 0S0$:

UTS:QSI

Step 4: For every w contained in the loop, expand it from right to left.

How to deal with $A \rightarrow 1A$:

Solution:

Exercise 4

Construct a CFG from the following PDA:

$$0, \varepsilon \to X \qquad \varepsilon, X \to \varepsilon$$

start $\to \alpha$ $1, X \to \varepsilon$ β

Exercise 4

Construct a CFG from the following PDA:

$$0, \varepsilon \to X \qquad \varepsilon, X \to \varepsilon$$

start $\to \alpha$ $1, X \to \varepsilon$ β

Step 1:

 $\begin{cases} V = \{A_{p,q} : \text{for every pair of } p, q \text{ in the state set of the given PDA}\};\\ S = A_{q_0,q_f} \text{ where } q_0 \text{ is the start state and } q_f \text{ is the accept state};\\ \Sigma \text{ is the same as the alphabet of the given PDA}. \end{cases}$

Exercise 4

Construct a CFG from the following PDA:

$$0, \varepsilon \to X \qquad \varepsilon, X \to \varepsilon$$

start $\to \alpha$ $1, X \to \varepsilon$ β

Step 1: In this case,

$$\begin{cases} V = \{A_{\alpha,\alpha}, A_{\alpha,\beta}, A_{\beta,\alpha}, A_{\beta,\beta}\};\\ S = A_{\alpha,\beta};\\ \Sigma = \{0,1\}. \end{cases}$$

Exercise 4

Construct a CFG from the following PDA:

$$0, \varepsilon \to X \qquad \varepsilon, X \to \varepsilon$$

start $\longrightarrow \alpha$ $1, X \to \varepsilon$ β

Step 2: For every state q, add a rule $A_{q,q} \to \varepsilon$.

Exercise 4

Construct a CFG from the following PDA:

$$0, \varepsilon \to X \qquad \varepsilon, X \to \varepsilon$$

start $\longrightarrow \alpha \qquad 1, X \to \varepsilon \qquad \beta$

Step 2: For every state q, add a rule $A_{q,q} \to \varepsilon$. In this case,

 $A_{\alpha,\alpha} \to \varepsilon$ $A_{\beta,\beta} \to \varepsilon$

Exercise 4

Construct a CFG from the following PDA:

$$0, \varepsilon \to X \qquad \varepsilon, X \to \varepsilon$$

start $\longrightarrow \alpha$ $1, X \to \varepsilon$ β

Step 3: For every state p, q, r where $p \neq q$, add a rule $A_{p,q} \rightarrow A_{p,r}A_{r,q}$.

Exercise 4

Construct a CFG from the following PDA:

$$0, \varepsilon \to X \qquad \varepsilon, X \to \varepsilon$$

start $\longrightarrow \alpha$ $1, X \to \varepsilon$ β

Step 3: For every state p, q, r where $p \neq q$, add a rule $A_{p,q} \rightarrow A_{p,r}A_{r,q}$. In this case,

$$egin{aligned} A_{lpha,eta} & o A_{lpha,lpha} A_{lpha,eta} \mid A_{lpha,eta} A_{eta,eta} \ A_{lpha,lpha} & o arepsilon \ A_{eta,eta} & o arepsilon \ A_{eta,eta} & o arepsilon \end{aligned}$$

Exercise 4

Construct a CFG from the following PDA:

$$0, \varepsilon \to X \qquad \varepsilon, X \to \varepsilon$$

start $\to \alpha$ $1, X \to \varepsilon$ β

Step 4: If there exist two transition functions δ_1 and δ_2 such that

- δ_1 pushes t into the stack, consumes $a \in \Sigma \cup \{\varepsilon\}$, and transfers state p to state r; and
- δ_2 pops t out of the stack, consumes $b \in \Sigma \cup \{\varepsilon\}$, and transfers state s to state q,

then add a rule $A_{p,q} \rightarrow aA_{r,s}b$.

Exercise 4

Construct a CFG from the following PDA:

$$0, \varepsilon \to X \qquad \varepsilon, X \to \varepsilon$$

start $\to \alpha$ $1, X \to \varepsilon$ β

Step 4: In this case, there exist two transition functions δ_1 and δ_2 where

- δ_1 pushes X into the stack, consumes $0 \in \Sigma \cup \{\varepsilon\}$, and transfers state α to state α ; and
- δ_2 pops X out of the stack, consumes $1 \in \Sigma \cup \{\varepsilon\}$, and transfers state α to state β ,

so add a rule $A_{\alpha,\beta} \to 0 A_{\alpha,\alpha} \mathbf{1}$.

Exercise 4

Construct a CFG from the following PDA:

$$0, \varepsilon \to X \qquad \varepsilon, X \to \varepsilon$$

start $\to \alpha$ $1, X \to \varepsilon$ β

Step 4: Besides, there exist another two transition functions δ_1 and δ_2 where

- δ_1 pushes X into the stack, consumes $0 \in \Sigma \cup \{\varepsilon\}$, and transfers state α to state α ; and
- δ_2 pops X out of the stack, consumes $\varepsilon \in \Sigma \cup \{\varepsilon\}$, and transfers state β to state β ,

so add a rule $A_{\alpha,\beta} \to 0 A_{\alpha,\beta}$.

Exercise 4

Construct a CFG from the following PDA:

$$0, \varepsilon \to X \qquad \varepsilon, X \to \varepsilon$$

start $\to \alpha$ $1, X \to \varepsilon$ β

Solution:

$$\begin{cases} V = \{A_{\alpha,\alpha}, A_{\alpha,\beta}, A_{\beta,\alpha}, A_{\beta,\beta}\};\\ S = A_{\alpha,\beta};\\ \Sigma = \{0,1\};\\ R = \{A_{\alpha,\alpha} \to \varepsilon, A_{\beta,\beta} \to \varepsilon, A_{\alpha,\beta} \to A_{\alpha,\alpha}A_{\alpha,\beta} \mid A_{\alpha,\beta}A_{\beta,\beta} \mid 0A_{\alpha,\alpha}1 \mid 0A_{\alpha,\beta}\}. \end{cases}$$

