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Background

e From the practical perspective, we need determinism.
e So people come up with the idea of Deterministic PDA!

e Please find the intuition, definition, etc., on the lecture slides.
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Relations between different languages

Deterministic

Regular Languages Context-free Languages

Context-free Languages
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Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

This particular example is not
only top-down, but also

@ left-right;
® left-most derivation;

® one symbol look-ahead.
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LL(1) parsers

o We focus on LL(1) parsers, a special type of top-down parsers.

o L: left-right
o L: left-most derivation
o 1: one symbol look-ahead

o Not every grammar allows for LL(1) parsing.

o Some grammars can be converted to allow for LL(1) parsing by
the techniques called left recursion removal and left factoring.
Please refer to the lecture slides.
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Relations between different languages

Deterministic

Regular Languages LL(1) Languages Context-free Languages
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What is a predicative parsing table?

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ *[ (])]$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi


https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the start variable E:

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ *[ (])]$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi


https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the start variable E:

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ [+ (])]8$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi


https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the start variable E:
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Tutorial: construction of a predicative parsing table

There are three steps:
1. construct FIRST sets;
2. construct FOLLOW sets;

3. construct the parsing table using the sets.
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Tutorial: construction of FIRST sets

Definition (FIRST sets)

FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

® FE— TF

@ L —+TF FIRST sets
®F —¢ E
o T FT
@ 1T — *xFT
07T —¢

@ F— (B

® F—id

SIESIEETSIIS
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Definition (FIRST sets)

FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.
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Tutorial: construction of FIRST sets

Definition (FIRST sets)
FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

® FE— TF
® F —+TF
®F —¢

o 17— FT
@ 1T — *xFT
07T —¢

@ F— (B
® F—id

FIRST sets

FIRST(F)

SIESIEETISIIS

(id
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Tutorial: construction of FIRST sets

Definition (FIRST sets)
FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.
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Tutorial: construction of FIRST sets

Definition (FIRST sets)

FIRST(A) is a set of symbols (including ¢) that can appear in the first position

of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the

FIRST set of the latter one into that of the former one.

® F—~ TF

@ L —+TF FIRST sets
®F ¢ E_ FIRST(T)
o T FT E i

© T = +FT O
® T e F (ud
@ F— (B

® F—id

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: construction of FIRST sets

Definition (FIRST sets)
FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.
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Tutorial: construction of FIRST sets

Definition (FIRST sets)
FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.
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Tutorial: construction of FIRST sets

Definition (FIRST sets)

FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

® FE— TF

@ L —+TF FIRST sets

® F —e¢ E  (id

o T—FT E + ¢

® T — «FT r (id
T x, €

07 —¢ ol (,id
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Tutorial: construction of FIRST sets

Definition (FIRST sets)

FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

® F—~ TF

®© F — +TF FIRST sets

®F —¢ E (,id

e - FT E +,¢

® T — «FT r (i
T x, €

@T’—)E Ja (,ld

@ '— (B

® [—id

UTS:Q 58


https://qsi.uts.edu.au/

Tutorial: construction of FIRST sets

Definition (FIRST sets)

FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

b What if there is one more rule of ' — & and how would this affect FIRST(T)?

® FE— TF

@ L —+TF FIRST sets
® F —e¢ E  (id
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Tutorial: construction of FIRST sets

Definition (FIRST sets)

FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

b What if there is one more rule of ' — & and how would this affect FIRST(T)?
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Tutorial: construction of FIRST sets

Definition (FIRST sets)
FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

b What if there is one more rule of F'— & and how would this affect FIRST(T)?
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Tutorial: construction of FOLLOW sets

Definition (FOLLOW

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.
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Tutorial: construction of FOLLOW sets

Definition (FOLLOV

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.
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Tutorial: construction of FOLLOW sets

Definition (FOLLOV

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.
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Tutorial: construction of FOLLOW sets

Definition (FOLLO

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.
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Tutorial: construction of FOLLOW sets

Definition (FOLLO

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.
a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.
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Tutorial: construction of FOLLOW sets

Definition (FOLLO

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

¢ If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one.
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Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!
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Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!
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Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!
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Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!
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Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!
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Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!
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Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

¢ If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!
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Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!

® F— TF

®© F — +TF FIRST sets FOLLOW sets
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Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!
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Tutorial: construction of FOLLOW sets

Definition (FOLLO

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!
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Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!
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Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!
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Tutorial: construction of parsing table using the sets
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Tutorial: construction of parsing table using the sets

id

E — TF means F can go to the

terminals in FIRST(T).
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Tutorial: construction of parsing table using the sets

id

E — TF means F can go to the

terminals in FIRST(T).

| | | by
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Tutorial: construction of parsing table using the sets

F — +TFE means F can go to

terminal +.

0o F— TF
® L —+TF
® L —¢

o T—FT
@ 7T — «xFT
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id
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FIRST sets
E (,id
E , €
T (,id
T *, €
F (,id
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Tutorial: construction of parsing table using the sets

id
E 1
E' — ¢ means F can go to the 1
terminals in FOLLOW(E). ;
F
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Tutorial: construction of parsing table using the sets

id [ ([)]$
E 1 1
E — € means F' can go to the o) 373
terminals in FOLLOW(E). ;
F
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Tutorial: construction of parsing table using the sets

T — FT means T can go to the

terminals in FIRST(F).

0o F— TF
®F - +TF
® L —¢

o 1T~ FT
@ 7T — «xFT
01T —¢

@ F— (B
® F—id
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FIRST sets
E  +, ¢
T (,id
T *, €
F (,id
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Tutorial: construction of parsing table using the sets

T — FT means T can go to the

terminals in FIRST(F).
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Tutorial: construction of parsing table using the sets

T — xFT means T can go to

terminal *.

0o F— TF
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Tutorial: construction of parsing table using the sets

T — & means T can go to the

terminals in FOLLOW(T).

0o F— TF
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E , €
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F (,id
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Tutorial: construction of parsing table using the sets

T — & means T can go to the

terminals in FOLLOW(T).

0o F— TF
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Tutorial: construction of parsing table using the sets

id * [ ([)]8$
E |1 1
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F 7
® F— TF
® E — +TF FIRST sets FOLLOW sets
9 EV — £ E (a ld E $7 )
© T FT E (,5 B $,$))
T (id T +8,
@ T — «xFT T e c 7 8
07T —c¢ F (id Foox+8,)
0 '~ (E)
0 F—id


https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

id [ ([)|8$
E 1 1
F — id means F can go to E 303
terminal id. T4 4
T 5 616
F 8 7
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Tutorial: construction of parsing table using the sets

0o F— TF
®F - +TF
® L —¢

o T—FT
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E , €
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