41080 Theory of Computing Science

Week 6 Tutorial Class

Chuangi Zhang

Centre for Quantum Software and Information
University of Technology Sydney

12th September, 2024

UTS:Q 58

https://qsi.uts.edu.au/

Background

Language: Regular language <= Context-free language
Model: DFA <= NFA <———= PDA

UTS:Q 58

https://qsi.uts.edu.au/

Background

Anything in between?

Language: Regular language <=— Context-free language
Model: DFA <= NFA <<——= PDA

UTS:Q 58

https://qsi.uts.edu.au/

Background

e From the practical perspective, we need determinism.

UTS:Q 58

https://qsi.uts.edu.au/

Background

e From the practical perspective, we need determinism.

e So people come up with the idea of Deterministic PDA!

UTS:Q 58

https://qsi.uts.edu.au/

Background

e From the practical perspective, we need determinism.
e So people come up with the idea of Deterministic PDA!

e Please find the intuition, definition, etc., on the lecture slides.

UTS:Q 58

https://qsi.uts.edu.au/

Relations between different languages

Deterministic

Regular Languages Context-free Languages

Context-free Languages

https://qsi.uts.edu.au/

Background

From a more practical perspective, we need more restriction.

UTS:Q 58

https://qsi.uts.edu.au/

Background

From a more practical perspective, we need more restriction.

Given a grammar G = (V,3, R, S) and a string w € L(G), how can
we construct the process of generating w from S?

UTS:Q 58

https://qsi.uts.edu.au/

Background

From a more practical perspective, we need more restriction.

Given a grammar G = (V,3, R, S) and a string w € L(G), how can
we construct the process of generating w from S?

This is achieved through a parser.

UTS:Q 58

https://qsi.uts.edu.au/

Background

From a more practical perspective, we need more restriction.

Given a grammar G = (V,3, R, S) and a string w € L(G), how can
we construct the process of generating w from S?

This is achieved through a parser. Two possible approaches:

UTS:Q 58

https://qsi.uts.edu.au/

Background

From a more practical perspective, we need more restriction.

Given a grammar G = (V,3, R, S) and a string w € L(G), how can
we construct the process of generating w from S?

This is achieved through a parser. Two possible approaches:

o Top-down parsers: start from S and derive the string w.

UTS:Q 58

https://qsi.uts.edu.au/

Background

From a more practical perspective, we need more restriction.

Given a grammar G = (V,3, R, S) and a string w € L(G), how can
we construct the process of generating w from S?

This is achieved through a parser. Two possible approaches:
o Top-down parsers: start from S and derive the string w.

o Bottom-up parsers: start from the string w and reach S.

UTS:Q 58

https://qsi.uts.edu.au/

Background

From a more practical perspective, we need more restriction.

Given a grammar G = (V,3, R, S) and a string w € L(G), how can
we construct the process of generating w from S?

This is achieved through a parser. Two possible approaches:
o Top-down parsers: start from S and derive the string w.

o Bottom-up parsers: start from the string w and reach S.

UTS:Q 58

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

o

UTS:Q 58

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

o

uTS:Qsi

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

®

o

uTS:Qsi

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

(B)
@ ©)

o

uTS:Qsi

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

(B)
(T) ©)
® @

o

uTS:Qsi

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

o

uTS:Qsi

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

(B)
(T) ©)
(B @

o

uTS:Qsi

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

o

uTS:Qsi

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

o

uTS:Qsi

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

o

uTS:Qsi

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

o

uTS:Qsi

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

o

uTS:Qsi

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

This particular example is not
only top-down, but also

o

uTS:Qsi

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

This particular example is not
only top-down, but also

@ left-right;

o

uTS:Qsi

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

This particular example is not
only top-down, but also

@ left-right;

® left-most derivation;

o

uTS:Qsi

https://qsi.uts.edu.au/

Why is it called top-down?

For some parsers, we can build a parsing tree to illustrate the generation process.

Example (Top-down parsers)

How string id + id is generated from the start variable £ by applying a bunch
of grammar rules:

This particular example is not
only top-down, but also

@ left-right;
® left-most derivation;

® one symbol look-ahead.

o

uTS:Qsi

https://qsi.uts.edu.au/

LL(1) parsers

o We focus on LL(1) parsers, a special type of top-down parsers.

UTS:Q 58

https://qsi.uts.edu.au/

LL(1) parsers

o We focus on LL(1) parsers, a special type of top-down parsers.

o L: left-right
o L: left-most derivation
o 1: one symbol look-ahead

UTS:Q 58

https://qsi.uts.edu.au/

LL(1) parsers

o We focus on LL(1) parsers, a special type of top-down parsers.

o L: left-right
o L: left-most derivation
o 1: one symbol look-ahead

o Not every grammar allows for LL(1) parsing.

UTS:Q 58

https://qsi.uts.edu.au/

LL(1) parsers

o We focus on LL(1) parsers, a special type of top-down parsers.

o L: left-right
o L: left-most derivation
o 1: one symbol look-ahead

o Not every grammar allows for LL(1) parsing.

o Some grammars can be converted to allow for LL(1) parsing by
the techniques called left recursion removal and left factoring.
Please refer to the lecture slides.

UTS:Q 58

https://qsi.uts.edu.au/

Relations between different languages

Deterministic

Regular Languages LL(1) Languages Context-free Languages

Context-free Languages

https://qsi.uts.edu.au/

What is a predicative parsing table?

v

UTS:Q 58

https://qsi.uts.edu.au/

What is a predicative parsing table?

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ *[(])]$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the start variable E:

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ *[(])]$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the start variable E:

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ [+ (])]8$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the start variable E:

E= TE

o L~ TFE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ [+ (])]8$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the left-most variable T:

EX TF

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ *[(])]$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the left-most variable T:

EX TE

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ [+ (])]8$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the left-most variable T:

E= TE = FTE

®© F— TE
® F —+TF
®F —¢
o1 FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ [+ (])]8$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the left-most variable F:

ES TE & FTE

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ *[(])]$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the left-most variable F:

E= TE & FTE

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ [+ (])]8$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the left-most variable F:

ESTE & FTE S idTE

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ [+ (])]8$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the left-most variable 7":

E=TE S FTE & dTE

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ *[(])]$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the left-most variable 7":

E=TE & FTE & dTE

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+« (])]$
E |1 1
E 2 3|3
T | 4 4
T 6 |5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the left-most variable 7":

ESTE S FTE S dTE S idR

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
@71 —¢

0@ F'— (B
® F—id

id |+« (])]$
E |1 1
E 2 3|3
T | 4 4
T 6 |5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the left-most variable £’

E=TE S TR S dTE L idp

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ *[(])]$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the left-most variable £’

ESTE S TR S dTE L idR

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+« (])]$
E |1 1
F 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the left-most variable £’

ESTE S TR S idTE S dE = id + TE

®© F— TE
® F - +TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+« (])]$
E |1 1
F 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the left-most variable T:

ESTE S TR S dTE S dE & id+ TE

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ *[(])]$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

What is a predicative parsing table?

Generate string id + id from the left-most variable T:

ESTE S FTE S dTE L idE 2 id+ TE = --- = id +id

®© F— TE
® F —+TF
®F —¢

o 1T FT
@ 1T — xFT
07T —¢

0@ F'— (B
® F—id

id |+ *[(])]$
E |1 1
E 2 3|3
T | 4 4
T 6 | 5 6|6
F |8 7

Predicative parsing table for the

left-hand side grammar.

o

uTS:Qsi

https://qsi.uts.edu.au/

From the perspective of a parsing tree

Generate string id + id from the start variable E:

®

UTS:Q 58

https://qsi.uts.edu.au/

From the perspective of a parsing tree

Generate string id + id from the start variable E:

UTS:Q 58

https://qsi.uts.edu.au/

From the perspective of a parsing tree

Generate string id + id from the start variable E:

UTS:Q 58

https://qsi.uts.edu.au/

From the perspective of a parsing tree

Generate string id + id from the start variable E:

UTS:Q 58

https://qsi.uts.edu.au/

From the perspective of a parsing tree

Generate string id + id from the start variable E:

UTS:Q 58

https://qsi.uts.edu.au/

From the perspective of a parsing tree

Generate string id + id from the start variable E:

UTS:Q 58

https://qsi.uts.edu.au/

From the perspective of a parsing tree

Generate string id + id from the start variable E:

UTS:Q 58

https://qsi.uts.edu.au/

From the perspective of a parsing tree

Generate string id + id from the start variable E:

UTS:Q 58

https://qsi.uts.edu.au/

From the perspective of a parsing tree

Generate string id + id from the start variable E:

https://qsi.uts.edu.au/

From the perspective of a parsing tree

Generate string id + id from the start variable E:

https://qsi.uts.edu.au/

From the perspective of a parsing tree

Generate string id + id from the start variable E:

https://qsi.uts.edu.au/

Tutorial: construction of a predicative parsing table

There are three steps:

1.

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of a predicative parsing table

There are three steps:
1. construct FIRST sets;

2.

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of a predicative parsing table

There are three steps:
1. construct FIRST sets;
2. construct FOLLOW sets;

3.

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of a predicative parsing table

There are three steps:
1. construct FIRST sets;
2. construct FOLLOW sets;

3. construct the parsing table using the sets.

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FIRST sets

Definition (FIRST sets)

FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

® FE— TF

@ L —+TF FIRST sets
®F —¢ E
o T FT
@ 1T — *xFT
07T —¢

@ F— (B

® F—id

SIESIEETSIIS

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FIRST sets

Definition (FIRST sets)

FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

® FE— TF

@ L —+TF FIRST sets
®F —¢ E
o T FT
@ 1T — *xFT
07T —¢

@ F— (B

® —id

SIESIEETSIIS

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FIRST sets

Definition (FIRST sets)
FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

® FE— TF
® F —+TF
®F —¢

o 17— FT
@ 1T — *xFT
07T —¢

@ F— (B
® F—id

FIRST sets

FIRST(F)

SIESIEETISIIS

(id

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FIRST sets

Definition (FIRST sets)
FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

® FE— TF
® F —+TF
®F —¢

o 17— FT
@ 1T — *xFT
07T —¢

@ F— (B
® F—id

FIRST sets

(id

SIESIEETSIIS

(id

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FIRST sets

Definition (FIRST sets)

FIRST(A) is a set of symbols (including ¢) that can appear in the first position

of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the

FIRST set of the latter one into that of the former one.

® F—~ TF

@ L —+TF FIRST sets
®F ¢ E_ FIRST(T)
o T FT E i

© T = +FT O
® T e F (ud
@ F— (B

® F—id

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FIRST sets

Definition (FIRST sets)
FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

® F—~ TF

® F —+TF FIRST sets
®L ¢ I (,id
o T FT £ i

® T — +FT H
® T e F (i
@ F— (B

® F—id

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FIRST sets

Definition (FIRST sets)
FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

® FE— TF

® F —+TF FIRST sets
® L —¢ E (,id
©T—FT u
® T — +FT R -
@T’—)E F (,ld
@ F— (B

® F—id

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FIRST sets

Definition (FIRST sets)

FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

® FE— TF

@ L —+TF FIRST sets

® F —e¢ E (id

o T—FT E + ¢

® T — «FT r (id
T x, €

07 —¢ ol (,id

@ F— (B

® F—id

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FIRST sets

Definition (FIRST sets)

FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

® F—~ TF

®© F — +TF FIRST sets

®F —¢ E (,id

e - FT E +,¢

® T — «FT r (i
T x, €

@T’—)E Ja (,ld

@ '— (B

® [—id

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FIRST sets

Definition (FIRST sets)

FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

b What if there is one more rule of ' — & and how would this affect FIRST(T)?

® FE— TF

@ L —+TF FIRST sets
® F —e¢ E (id
© 7T FT E e
® T — +FT r (id

T x, €

@T’—)E F (,ld
@ F— (B

® F—id

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FIRST sets

Definition (FIRST sets)

FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

b What if there is one more rule of ' — & and how would this affect FIRST(T)?

®© F—~ TFE

@ L —+TF FIRST sets
® F —e¢ E (id
0T FT =T E +e
® T' — «FT r (id

T x, €

01T —¢ ol (,id
@ F— (B

® F—id

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FIRST sets

Definition (FIRST sets)
FIRST(A) is a set of symbols (including ¢) that can appear in the first position
of any string derived from variable A.

a If there is a rule starting with variables on both sides, we will need to incorporate the
FIRST set of the latter one into that of the former one.

b What if there is one more rule of F'— & and how would this affect FIRST(T)?

® FE— TF

® F —+TF FIRST sets

® L —e¢ FE (,id

o —FT=T E & +’Ri} T
T , id, FIRST

@ 1T — *xFT 7 -

07T —¢ F (,id

@ F— (B

® F—id

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLLOW

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

o L~ TFE

®E — +TF FOLLOW sets
® L —¢

o T~ FT
@ 1T — xFT
1T —¢

@ F'— (B)

@F—>id UTS:Q S

| || | =

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLLOV

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

o L~ TFE

®F - +TF FOLLOW sets

®F —¢ E $

o T FT E

@ T — «FT ;
F

1T —¢
@ F— (B
® F—id uTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLLOV

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

®© F— TFE

® & —+TF FOLLOW sets
® L —¢ $,)
o T—FT
@ 1T — xFT
T —¢

@ F— (B
® F—id uTS:0si

| || | =

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLLO

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

e L— TF
® F —+TF
®F —¢

o T—FT
@ 1T — xFT
T —¢

@ F— (B
® F—id uTS:0si

FOLLOW sets
$,)
FOLLOW(E)

SRS

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLLO

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.
a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

® F— TF
® F —+TF
®F —¢ E
o T—FT E
® T — +FT ;
1T —¢ 7
@ F— (B

® F—id uTS:Q 58

FOLLOW sets
$,)
$,)

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLLO

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

¢ If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one.

o L~ TFE

® L —+TF FIRST sets FOLLOW sets

® Ja— E $7)

(4] T— FT 2 +, € F $,)

® T — «FT ; +
F

1T —¢
@ F— (B
® F—id uTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!

o L~ TFE

® F —+TF FIRST sets FOLLOW sets

® Ja— E $7)

oT—FT E + ¢ FE $,)

® T — «FT ; +
F

1T —¢
@ F— (B
® F—id uTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!

o L~ TFE

® L —+TH = +T FIRST sets FOLLOW sets

® F —¢ E $,)

©o 7T FT F +, ¢ F $,)

@ T — «FT r +
T
F

1T —¢
@ F— (B
® F—id uTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!

o L~ TFE

® L —+TE = +T FOLLOW sets

® L —e¢ E $,)

© T — «FT g +, FOLLOW(F))
@T—)g F

@ F— (E)

0 F—id uTS:Qsi

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!

o L~ TFE
®F —+TE = +T
®© L —¢ E
© T FT E
© T — +FT I +5)
T
F

FOLLOW sets

1T —¢
@ F— (B
® F—id uTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!

o L~ TFE
®E — +TF FOLLOW sets
® L —e¢ E $,)

T +7 b
® T~ «FT T FOLLOW(T)
(6) T-)Z‘f F
0 F'— (B

0 F—id uTS:Qsi

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!

®© E— TF
® F —+TF
®F —¢

o T~ FT
@ 1T — xFT
T —¢

@ F— (B
® F—id uTS:0si

FOLLOW sets
$,)
$,)

+,8%,)

+ 3,)

| || | =

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

¢ If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!

® F— TF

®© F — +TF FIRST sets FOLLOW sets
®F —¢

o T FT
@ 1T — xI'T
1T —¢

@ F— (B
® F—id uTS:Q5!

| || | =

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!

® F— TF

®© F — +TF FIRST sets FOLLOW sets
®F —¢

o T FT
@ 1T — xI'T
1T —¢

@ F— (B
® F—id uTS:Q5!

™

| || | =

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!

®© E— TF

QL —+TH FIRST sets FOLLOW sets
®F —¢

e T—~FT=F

@ T — +xFT = xF
07T —¢

@ F— (B

® F—id uTS:0si

™

| || | =

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLLO

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!

o L~ TFE

®E — +TF FOLLOW sets

® F —¢ E $,)
07T FT =F E $,)

@ 1 = *xFT = xF g; 1’?’3

© T e F x, FOLLOW(T, T)
0 F'— (B

0 F—id uTS:Qsi

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!

o L~ TFE

0L~ +TF FOLLOW sets
® F —¢ E $,)
07T FT =F £ $,)
@ 1 = *xFT = xF ;’ 1’?’3
01T =e F % +5,)
@ F— (b

0 F—id uTS:Qsi

https://qsi.uts.edu.au/

Tutorial: construction of FOLLOW sets

Definition (FOLL

FOLLOW/(A) is a set of symbols (not including €) that can appear immediately
after variable A in any derivation of the grammar.

a We always incorporate $ into the FOLLOW set of the start variable.

b If there is a rule ending with variables on both sides, we will need to incorporate the
FOLLOW set of the former one into that of the latter one.

c If there is a rule involving two consecutive variables, we will need to incorporate the FIRST
set of the latter one into the FOLLOW set of the former one. Caution if € is in the set!

o L~ T
®F — +TF FOLLOW sets
® L —e¢ E $,)

T +7 b
@ 1T — xI'T T 5
01T —¢ Iz x + $,)
@ F— (B)

0 F—id uTS:Qsi

https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

0o F— TF
®F - +TF
® L —¢

o T—FT
@ 7T — «xFT
01T —¢

@ F— (B
® F—id

FIRST sets
E (,id
E , €
T (,id
T *, €
F (,id

id

NI =

FOLLOW sets

E $,)
£ $,)
T +,3,)
T +8)
F % +,3,)

https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

id

E — TF means F can go to the

terminals in FIRST(T).

|y | by

® F— TF

oL —+TF FIRST sets
®F —¢ E (id
© T FT B +e
® T' — +FT r (i

T *, €

01T —¢ F (,id
@ F— (B

® F—id

FOLLOW sets

E $,)
£ $,)
T +,3,)
T +8)
F % +,3,)

https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

id

E — TF means F can go to the

terminals in FIRST(T).

| | | by

® F— TF

oL —+TF FIRST sets
®F —¢ E (id
© T FT B +e
® T' — +FT r (i

T *, €

01T —¢ F (,id
@ F— (B

® F—id

FOLLOW sets

E $,)
£ $,)
T +,3,)
T +8)
F % +,3,)

https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

F — +TFE means F can go to

terminal +.

0o F— TF
® L —+TF
® L —¢

o T—FT
@ 7T — «xFT
01T —¢

@ F— (B
® F—id

id

NI =

FIRST sets
E (,id
E , €
T (,id
T *, €
F (,id

FOLLOW sets

E $,)
£ $,)
T +,3,)
T +8)
F % +,3,)

https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

id
E 1
E' — ¢ means F can go to the 1
terminals in FOLLOW(E). ;
F
o F— TF
oL —+TF FIRST sets
®F —¢ E (id
© 7T FT B , €
@ T' — «FT ro (i
T *, €
(6] T — £ F (’ id
@ F— (B
® F—id

FOLLOW sets

E $,)
£ $,)
T +,3,)
T +8)
F % +,3,)

https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

id [([)]$
E 1 1
E — € means F' can go to the o) 373
terminals in FOLLOW(E). ;
F
o F— TF
® L~ +TH FIRST sets FOLLOW sets
@F —¢ E (id E $)
© 7T FT B (76 B $g)
T (id T 138,
@ 7T — «xFT 7 - 7 5
0T e F (i F %8,
@ F— (B
® F—id

https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

T — FT means T can go to the

terminals in FIRST(F).

0o F— TF
®F - +TF
® L —¢

o 1T~ FT
@ 7T — «xFT
01T —¢

@ F— (B
® F—id

id

|y | by

FIRST sets
E +, ¢
T (,id
T *, €
F (,id

FOLLOW sets

E $,)
£ $,)
T +,3,)
T +8)
F % +,3,)

https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

T — FT means T can go to the

terminals in FIRST(F).

0o F— TF
®F - +TF
® L —¢

o 1T~ FT
@ 7T — «xFT
01T —¢

@ F— (B
® F—id

SIS
=~

FIRST sets
E +, ¢
T (,id
T *, €
F (,id

FOLLOW sets

S S
|+
ol e

https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

T — xFT means T can go to

terminal *.

0o F— TF
®F - +TF
® L —¢

o T—FT
@ 1T — xFT
01T —¢

@ F— (B
® F—id

FIRST sets
E (,id
E , €
T (,id
T *, €
F (,id

ot

| | | by

FOLLOW sets

E $,)
£ $,)
T +,3,)
T +8)
F % +,3,)

https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

T — & means T can go to the

terminals in FOLLOW(T).

0o F— TF
®F - +TF
® L —¢

o T—FT
@ 7T — «xFT
01 —¢

@ F— (B
® F—id

id [([)|8$
E |1 1
E 313
T | 4 4
T 5
F

FIRST sets
E (,id
E , €
T (,id
T *, €
F (,id

FOLLOW sets

E $,)
F $,)
T +,%,)
T +'8%,)
F % +,3,)

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

T — & means T can go to the

terminals in FOLLOW(T).

0o F— TF
®F - +TF
® L —¢

o T—FT
@ 7T — «xFT
01 —¢

@ F— (B
® F—id

id [([)]$
E |1 1
E 313
T | 4 4
T 5 6|6
F

FIRST sets
E (,id
E , €
T (,id
T *, €
F (,id

FOLLOW sets

E $,)
F $,)
T +,%,)
T +'8%,)
F % +,3,)

UTS:Q 58

https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

id * [([)]8$
E |1 1
F — (F) means F can go to o4 313
terminal (. T |4 4
T 5 6|6
F 7
® F— TF
® E — +TF FIRST sets FOLLOW sets
9 EV — £ E (a ld E $7)
© T FT E (,5 B $,$))
T (id T +8,
@ T — «xFT T e c 7 8
07T —c¢ F (id Foox+8,)
0 '~ (E)
0 F—id

https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

id [([)|8$
E 1 1
F — id means F can go to E 303
terminal id. T4 4
T 5 616
F 8 7
o L~ TFE
®F — +TF FIRST sets FOLLOW sets
9 EV — £ E (a ld E $7)
© T FT E (76 E $,$))
T (id T +8,
@ T — xFT 7 - 7 8
07T —c¢ F (id Foox+8,)
@ F— (B
® F—id

https://qsi.uts.edu.au/

Tutorial: construction of parsing table using the sets

0o F— TF
®F - +TF
® L —¢

o T—FT
@ 7T — «xFT
01T —¢

@ F— (B
® F—id

FIRST sets
E (,id
E , €
T (,id
T *, €
F (,id

id [([)|8$
E |1 1
E 313
T | 4 4
T 5 6|6
F | 8 7

E $,)
£ $,)
T +,3,)
T +8)
F % +,3,)

https://qsi.uts.edu.au/

